Now Reading
Bacteria produce potential gasoline replacement directly from cellulose

Bacteria produce potential gasoline replacement directly from cellulose

Switchgrass
Image via Wikipedia

With the situation in Libya causing a spike in fuel prices worldwide there’s some good biofuel-related news out of the U.S. Department of Energy’s BioEnergy Science Center (BESC) that could help to reduce many countries’ dependence on oil imports.

For the first time, BESC researchers have succeeded in producing isobutanol directly from cellulosic plant matter using bacteria. Being a higher grade of alcohol than ethanol, isobutanol holds particular promise as a gasoline replacement as it can be burned in regular car engines with a heat value similar to gasoline.

Due in large part to its natural defenses to being chemically dismantled, cellulosic biomass like corn stover and switchgrass, which is abundant and cheap, has been much more difficult to utilize than corn or sugar cane. This means that producing biofuel from such biomass involves several steps, which is more costly than a process that combines biomass utilization and the fermentation of sugars to biofuel into a single process.

Building on earlier work at UCLA in creating a synthetic pathway for isobutanol production, the BESC researchers managed to achieve such a single-step process by developing a strain of Clostridium cellulolyticum, a native cellulose-degrading microbe that could synthesize isobutanol directly from cellulose.

“In nature, no microorganisms have been identified that possess all of the characteristics necessary for the ideal consolidated bioprocessing strain, so we knew we had to genetically engineer a strain for this purpose,” said Yongchao Li of Oak Ridge National Laboratory.

See Also

Read more . . .

 

Enhanced by Zemanta
What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top