Now Reading
A Renewable Twist on Fossil Fuels

A Renewable Twist on Fossil Fuels

Pulling valuable fuels out of thin air? It sounds like magic, but Joel Rosenthal, a chemist at the University of Delaware, is working to transform carbon dioxide (CO2), a greenhouse gas in the atmosphere, into gas for your car and clean-energy future fuels.

Such a feat could help reduce the rising CO2 levels implicated in global warming and also offer a new method of renewable energy production.

Oak Ridge Associated Universities (ORAU), a consortium of 98 Ph.D.-granting universities, of which UD is a member, has selected Rosenthal to receive the Ralph E. Powe Junior Faculty Enhancement Award to pursue the novel research. Rosenthal is one of 30 award winners nationwide.

The competitive award, which provides $5,000 in seed funding from ORAU and $5,000 in matching funding from the faculty member’s university, is intended to enrich the research and educational growth of young faculty and serve as a springboard to new funding opportunities.

Rosenthal and his team are designing electrocatalysts from metals such as nickel and palladium that will freely give away electrons when they react with carbon dioxide, thus chemically reducing this greenhouse gas into energy-rich carbon monoxide or methanol.

Besides its use in making plastics, solvents, carpet and other products, methanol fuels race cars in the United States and currently is being researched as a hydrogen carrier for fuel cell vehicles.

Carbon monoxide is an important precursor to liquid hydrocarbons in the energy arena, in addition to its applications as an industrial chemical for producing plastics to detergents to the acetic acid used in food preservation, drug manufacturing and other fields.

See Also

“The catalytic reduction of carbon dioxide to carbon monoxide is an important transformation that would allow for the mitigation of atmospheric CO2 levels, while producing an energy-rich substrate that forms a basis for fuels production,” Rosenthal says.

Read more . . .

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top