Australian scientists develop cheap and rapid way to identify antibiotic-resistant golden staph (MRSA).
A combination of off-the-shelf quantum dot nanotechnology and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.
Staphylococcus aureus (golden staph), is a common form of bacterium that causes serious and sometimes fatal conditions such as pneumonia and heart valve infections. Of particular concern is a strain that does not respond to methicillin, the antibiotic of first resort, and is known as methicillin-resistant S. aureus, or MRSA.
Recent reports estimate that 700 000 deaths globally could be attributed to antimicrobial resistance, such as methicillin-resistance. Rapid identification of MRSA is essential for effective treatment, but current methods make it a challenging process, even within well-equipped hospitals.
Soon, however, that may change, using nothing except existing technology.
Researchers from Macquarie University and the University of New South Wales, both in Australia, have demonstrated a proof-of-concept device that uses bacterial DNA to identify the presence of Staphylococcus aureus positively in a patient sample – and to determine if it will respond to frontline antibiotics.
In a paper published in the international peer-reviewed journal Sensors and Actuators B: Chemical the Macquarie University team of Dr Vinoth Kumar Rajendran, Professor Peter Bergquist and Associate Professor Anwar Sunna with Dr Padmavathy Bakthavathsalam (UNSW) reveal a new way to confirm the presence of the bacterium, using a mobile phone and some ultra-tiny semiconductor particles known as quantum dots.
“Our team is using Synthetic Biology and NanoBiotechnology to address biomedical challenges. Rapid and simple ways of identifying the cause of infections and starting appropriate treatments are critical for treating patients effectively,” says Associate Professor Anwar Sunna, head of the Sunna Lab at Macquarie University.
“This is true in routine clinical situations, but also in the emerging field of personalised medicine.”
The researchers’ approach identifies the specific strain of golden staph by using a method called convective polymerase chain reaction (or cPCR). This is a derivative of a widely -employed technique in which a small segment of DNA is copied thousands of times, creating multiple samples suitable for testing.
Vinoth Kumar and colleagues then subject the DNA copies to a process known as lateral flow immunoassay – a paper-based diagnostic tool used to confirm the presence or absence of a target biomarker. The researchers use probes fitted with quantum dots to detect two unique genes, that confirms the presence of methicillin resistance in golden staph
A chemical added at the PCR stage to the DNA tested makes the sample fluoresce when the genes are detected by the quantum dots – a reaction that can be captured easily using the camera on a mobile phone.
The result is a simple and rapid method of detecting the presence of the bacterium, while simultaneously ruling first-line treatment in or out.
Although currently at proof-of-concept stage, the researchers say their system which is powered by a simple battery is suitable for rapid detection in different settings.
“We can see this being used easily not only in hospitals, but also in GP clinics and at patient bedsides,” says lead author, Macquarie’s Vinoth Kumar Rajendran.
The paper is available here: https://www.sciencedirect.com/science/article/pii/S0925400519310482#!
Learn more: Using quantum dots and a smartphone to find killer bacteria
The Latest on: Bacterial DNA
[google_news title=”” keyword=”bacterial DNA” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Bacterial DNA
- Next-Gen Biofactories: How Tiny Bacteria Could Revolutionize the Materials We Use Every Dayon July 30, 2024 at 8:37 pm
ETH researchers have modified certain bacteria with UV light so that they produce more cellulose. The basis for this is a new approach with which the researchers generate thousands of bacterial ...
- Turning bacteria into cellulose-producing mini-factorieson July 30, 2024 at 7:54 am
Researchers at ETH Zurich have introduced an innovative approach to transform the bacterium ‘Komagataeibacter sucrofermentans’ into a highly-efficient cellulose-producing mini-factory.
- Scientists convert bacteria into efficient cellulose producerson July 30, 2024 at 3:17 am
Bacteria produce materials that are of interest to humans, such as cellulose, silk and minerals. The advantage of producing bacteria in this way is that it is sustainable, takes place at room ...
- 8,000 Year Old DNA Reveals Neolithic Origin of Brucellosison July 29, 2024 at 7:34 am
"It requires well preserved DNA and the presence of the infectious agent during the life of the animal. We were lucky enough to detect the presence of Brucella melitensis in Menteşe Höyük, which is a ...
- 100 Million Times More Difficult: Revolutionary Dual Action Antibiotic Makes Bacterial Resistance Nearly Impossibleon July 28, 2024 at 10:30 pm
A groundbreaking study from the University of Illinois Chicago unveils macrolones, a new type of antibiotic that targets bacteria in two ways, drastically reducing the potential for resistance and ...
- Two Maine beaches under advisories for elevated bacteria levelson July 26, 2024 at 4:27 pm
Water-quality testing at Ocean Park in Old Orchard Beach and Mackerel Cove in Harpswell found bacteria levels several times higher than what the EPA considers safe.
- Searching for New Bacterial Therapeutics Amongst Microbial Neighborson July 26, 2024 at 8:07 am
A member of the lung microbiota releases a peptide that hinders the respiratory pathogen Streptococcus pneumoniae.
- New drug could make bacterial resistance ‘nearly impossible’on July 25, 2024 at 6:36 pm
University of Illinois Chicago researchers developed a dual-action antibiotic that makes bacterial resistance to drugs nearly impossible.
- New antibiotic would make it more difficult for bacteria to develop drug resistance, UIC researchers sayon July 24, 2024 at 4:04 am
A new drug developed by UIC researchers would prevent protein production and disrupt DNA function, making drug resistance nearly impossible.
- Dual action antibiotic could make bacterial resistance nearly impossibleon July 22, 2024 at 5:00 pm
Their experiments demonstrate that macrolones can work two different ways—either by interfering with protein production or corrupting DNA structure. Because bacteria would need to implement defenses ...
via Bing News