New Compounds Display Strong Therapeutic Potential for Cystic Fibrosis

Cystic_fibrosis_manifestations

They hope to start clinical trials in cystic fibrosis patients in the coming years.

Cystic fibrosis is a lethal genetic disorder that in France affects one child per 4,500 births. An international team led by scientists at the Institut Fédératif de Recherche Necker-Enfants Malades (CNRS/Inserm/Université Paris Descartes), led by Aleksander Edelman, has recently discovered two new compounds that could be used to treat patients carrying the most common mutation. By means of virtual screening and experiments on mice and human cells in culture, the scientists were able to screen 200,000 compounds and selected two that allowed the causal mutated protein to express itself and fulfill its function. These findings were recently published online in EMBO Molecular Medicine.

Cystic fibrosis is a genetic disorder that affects the epithelia of numerous organs, and particularly those in the lungs, pancreas and intestine. In the lungs, this takes the form of insufficient epithelial hydration, resulting in excess mucus in the bronchi. This mucus retains pathogenic agents and favors the onset of chronic infections and inflammatory conditions that are ultimately fatal to the sufferer.

The disease is caused by mutations in the gene coding for a protein called CFTR (cystic fibrosis transmembrane conductance regulator). This protein, which is essential to ensure the passage of water through an epithelium, is an ion channel that allows chloride ions to pass through cell membranes. To date, about 2,000 gene mutations that cause the disease have been determined, but 70% of cases of cystic fibrosis are due to a single mutation called F508. And it is this mutation that is targeted by the recently-discovered compounds.

The scientists used computer techniques to screen 200,000 compounds, looking for those that might interact with a specific zone in the abnormal protein, and found about a dozen potentially active molecules. Using these 12 compounds, they then performed in-vitro tests on human cell cultures and in-vivo experiments on mice showing this mutation. They were thus able to observe that two of these compounds allowed the mutated F508-CFTR protein to be trafficked to the membrane and fulfill its role.

Read more . . .

See Also

 

 

The Latest Bing News on:
Cystic Fibrosis
The Latest Google Headlines on:
Cystic Fibrosis

[google_news title=”” keyword=”Cystic Fibrosis” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Inflammatory conditions
The Latest Google Headlines on:
Inflammatory conditions

[google_news title=”” keyword=”inflammatory conditions” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top