Now Reading
New prediction tool gives 2-3 minute warning of incoming rogue waves

New prediction tool gives 2-3 minute warning of incoming rogue waves

“These waves really talk to each other,” Themis Sapsis says. “They interact and exchange energy. It’s not just bad luck. It’s the dynamics that create this phenomenon.” Image: MIT News
“These waves really talk to each other,” Themis Sapsis says. “They interact and exchange energy. It’s not just bad luck. It’s the dynamics that create this phenomenon.”
Image: MIT News
Rogue wave ahead

Sailing history is rife with tales of monster-sized rogue waves — huge, towering walls of water that seemingly rise up from nothing to dwarf, then deluge, vessel and crew. Rogue waves can measure eight times higher than the surrounding seas and can strike in otherwise calm waters, with virtually no warning.

Now a prediction tool developed by MIT engineers may give sailors a 2-3 minute warning of an incoming rogue wave, providing them with enough time to shut down essential operations on a ship or offshore platform.

The tool, in the form of an algorithm, sifts through data from surrounding waves to spot clusters of waves that may develop into a rogue wave. Depending on a wave group’s length and height, the algorithm computes a probability that the group will turn into a rogue wave within the next few minutes.

“It’s precise in the sense that it’s telling us very accurately the location and the time that this rare event will happen,” says Themis Sapsis, the American Bureau of Shipping Career Development Assistant Professor of Mechanical Engineering at MIT. “We have a range of possibilities, and we can say that this will be a dangerous wave, and you’d better do something. That’s really all you need.”

“Not just bad luck”

Like many complex systems, the open ocean can be represented as a chaotic mix of constantly changing data points. To understand and predict rare events such as rogue waves, scientists have typically taken a leave-no-wave-behind approach, in which they try to simulate every individual wave in a given body of water, to give a high-resolution picture of the sea state, as well as any suspicious, rogue-like activity. This extremely detailed approach is also computationally expensive, as it requires a cluster of computers to solve equations for each and every wave, and their interactions with surrounding waves.

“It’s accurate, but it’s extremely slow — you cannot run these computations on your laptop,” Sapsis says. “There’s no way to predict rogue waves practically. That’s the gap we’re trying to address.”

Sapsis and Cousins devised a much simpler, faster way to predict rogue waves, given data on the surrounding wave field.

In previous work, the team identified one mechanism by which rogue waves form in unidirectional wave fields. They observed that, while the open ocean consists of many waves, most of which move independently of each other, some waves cluster together in a single wave group, rolling through the ocean together. Certain wave groups, they found, end up “focusing” or exchanging energy in a way that eventually leads to an extreme rogue wave.

“These waves really talk to each other,” Sapsis says. “They interact and exchange energy. It’s not just bad luck. It’s the dynamics that create this phenomenon.”

Learn more: New prediction tool gives 2-3 minute warning of incoming rogue waves

 

 

The Latest on: Predicting rogue waves

[google_news title=”” keyword=”predicting rogue waves” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Predicting rogue waves

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top