UCLA researchers create highly transparent solar cells for windows that generate electricity

They can be produced in high volume at low cost

UCLA researchers have developed a new transparent solar cell that is an advance toward giving windows in homes and other buildings the ability to generate electricity while still allowing people to see outside. Their study appears in the journal ACS Nano.

The UCLA team describes a new kind of polymer solar cell (PSC) that produces energy by absorbing mainly infrared light, not visible light, making the cells nearly 70% transparent to the human eye. They made the device from a photoactive plastic that converts infrared light into an electrical current.

“These results open the potential for visibly transparent polymer solar cells as add-on components of portable electronics, smart windows and building-integrated photovoltaics and in other applications,” said study leader Yang Yang, a UCLA professor of materials science and engineering, who also is director of the Nano Renewable Energy Center at California NanoSystems Institute (CNSI).

Yang, who is also the holder of the Carol and Lawrence E. Tannas, Jr., Endowed Chair in Engineering, added that there has been intense world-wide interest in so-called polymer solar cells. “Our new PSCs are made from plastic-like materials and are lightweight and flexible,” he said. “More importantly, they can be produced in high volume at low cost.”

Polymer solar cells have attracted great attention due to their advantages over competing solar cell technologies. Scientists have also been intensely investigating PSCs for their potential in making unique advances for broader applications. Several such applications would be enabled by high-performance visibly transparent photovoltaic (PV) devices, including building-integrated photovoltaics and integrated PV chargers for portable electronics.

Read more . . .

See Also
A simulation of the illuminance of an alleyway at noon at two different times of year, autumn (top) and winter (bottom). The new light-directing panel increases the amount of light that reaches the alleyway, as indicated by the higher amounts of red and yellow in the right-hand images (“with panel”) compared to the left-hand images (“without panel”). Credit: Optics Express.

via UCLA Newsroom
 

The Latest Streaming News: Building-integrated photovoltaics updated minute-by-minute

 

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top