University of Virginia mechanical engineers and materials scientists, in collaboration with materials scientists at Penn State, the University of Maryland and the National Institute of Stand... Read more
A newly produced material is believed to be the “blackest” ever created. Vantablack is a pure carbon coating and absorbs 99.96 percent of incident radiation (solar energy as it h... Read more
University of Oregon chemist David C. Johnson likens his lab’s newly published accomplishments to combining two flavors of ice cream — vanilla and chocolate — and churning out thousand... Read more
English: Illustrates the difference between thermal conductivity of thermal interface materials and thermal contact resistance. (Photo credit: Wikipedia)
Boron arsenide may be of potential interest for cooling applications
An unlikely material, cubic boron arsenide, could deliver an extraordinarily high thermal conductivity – on par with the industry standard set by costly diamond – researchers report in the current issue of the journal Physical Review Letters.
The discovery that the chemical compound of boron and arsenic could rival diamond, the best-known thermal conductor, surprised the team of theoretical physicists from Boston College and the Naval Research Laboratory. But a new theoretical approach allowed the team to unlock the secret to boron arsenide’s potentially extraordinary ability to conduct heat.
Smaller, faster and more powerful microelectronic devices pose the daunting challenge of removing the heat they generate. Good thermal conductors placed in contact with such devices channel heat rapidly away from unwanted “hot spots” that decrease the efficiency of these devices and can cause them to fail.
Diamond is the most highly prized of gemstones. But, beyond its brilliance and beauty in jewelry, it has many other remarkable properties. Along with its carbon cousins graphite and graphene, diamond is the best thermal conductor around room temperature, having thermal conductivity of more than 2,000 watts per meter per Kelvin, which is five times higher than the best metals such as copper. Currently, diamond is widely used to help remove heat from computer chips and other electronic devices. Unfortunately, diamond is rare and expensive, and high quality synthetic diamond is difficult and costly to produce. This has spurred a search for new materials with ultra-high thermal conductivities, but little progress has been made in recent years.
The high thermal conductivity of diamond is well understood, resulting from the lightness of the constituent carbon atoms and the stiff chemical bonds between them, according to co-author David Broido, a professor of physics at Boston College. On the other hand, boron arsenide was not expected to be a particularly good thermal conductor and in fact had been estimated – using conventional evaluation criteria – to have a thermal conductivity 10 times smaller than diamond.
The team found the calculated thermal conductivity of cubic boron arsenide is remarkably high, more than 2000 Watts per meter per Kelvin at room temperature and exceeding that of diamond at higher temperatures, according to Broido and co-authors Tom Reinecke, senior scientist at the Naval Research Laboratory, and Lucas Lindsay, a post-doctoral researcher at NRL who earned his doctorate at BC.
Broido said the team used a recently developed theoretical approach for calculating thermal conductivities, which they had previously tested with many other well-studied materials. Confident in their theoretical approach, the team took a closer look at boron arsenide, whose thermal conductivity has never been measured.
Unlike metals, where electrons carry heat, diamond and boron arsenide are electrical insulators. For them, heat is carried by vibrational waves of the constituent atoms, and the collision of these waves with each other creates an intrinsic resistance to heat flow. The team was surprised to find an unusual interplay of certain vibrational properties in boron arsenide that lie outside of the guidelines commonly used to estimate the thermal conductivity of electrical insulators. It turns out the expected collisions between vibrational waves are far less likely to occur in a certain range of frequencies. Thus, at these frequencies, large amounts heat can be conducted in boron arsenide.
“This work gives important new insight into the physics of heat transport in materials, and it illustrates the power of modern computational techniques in making quantitative predictions for materials whose thermal conductivities have yet to be measured,” said Broido. “We are excited to see if our unexpected finding for boron arsenide can be verified by measurement. If so, it may open new opportunities for passive cooling applications using boron arsenide, and it would further demonstrate the important role that such theoretical work can play in providing useful guidance to identify new high thermal conductivity materials.”
Chomerics has unveiled a thermal interface gel aimed at high-throughput production. Called GEL 60HF (HF = high flow), long-term thermal stability is ...
Heat sinks are essential components of electronic devices that aim to dissipate excess heat generated from them. They come in various forms and materials to suit a range of applications, and their ...
A team from NIST and the University of Colorado Boulder have developed a novel device using gallium nitride nanopillars on silicon that significantly improves the conversion of heat into electricity.
As per this latest study by Fact.MR, a provider of market research and competitive intelligence, the global thermal conductive sheet market is expected to garner US$ 2131.6 million by 2033, increasing ...
It possesses remarkable properties like high electron mobility, mechanical strength, and thermal conductivity. Extensive time and effort has been ... A research team led by Prof. Qin Xiaoying from ...
A potential solution to this hot issue comes from passive daytime radiative cooling (PDRC), which is the ability of a surface to emit its own heat into space without it being absorbed by the air ...
If one thing is clear from Computex 2023, its that PCIe 5.0 SSDs are finally making it to market, and that water cooling is going to touch every part of our PC builds in the future, as evidenced by ...
2 SSD, which is where a lot of the extreme cooling needs are showing up these days. An external drive equipped with two AirJet Minis, compared to the same Sabrent retail design with passive ...
New Markets 2023-2043" report has been added to ResearchAndMarkets.com's offering. This report is created to assist you to create a billion-dollar materials or device business from the emerging ...
OVHcloud has published research showing benefits from its hybrid liquid cooling technology, which uses both dielectric fluid and water in vertically-sealed server tanks. The European cloud provider ...
The use of natural ventilation and passive cooling techniques further underscores the home's innovative eco-design and functionality. The result is a beautiful tiny home that seamlessly blends ...
Integrated passive thermal solution quietly handles powerful processors and risky environments without losing its cool FREMONT, Calif.--(BUSINESS WIRE)--Durabook, an innovator in purpose-built ...
Fans are also noisy, which makes Durabook's Coolfinity products quiet, integrated passive cooling system a strong fit for public safety, military and defense deployments. The Durabook R8 rugged ...
Fans are also noisy, which makes Durabook’s Coolfinity products quiet, integrated passive cooling system a strong fit for public safety, military and defense deployments. The Durabook R8 rugged tablet ...
Interdisciplinary Study From Rensselaer Polytechnic Institute Demonstrates New Method for Significantly Increasing Heat Transfer Rate Across Two Different Materials A team of interdisciplina... Read more
The usages for the material are not confined to seawater desalination There are vast quantities of seawater available; drinking water, on the other hand, is in scarce supply. Desalination pl... Read more
Its figure of merit (a rating for thermoelectric efficiency) is one of the highest ever recorded for a bulk material Thermoelectric materials work by converting differences in temperature in... Read more
Spider silk does so 800 times better than any other organic material ever tested Over the years, we’ve seen Spiderman use his webbing to catch villains, swing between buildings,... Read more
Waste heat is a byproduct of nearly all electrical devices and industrial processes Waste heat is a byproduct of nearly all electrical devices and industrial processes, from driving a car to... Read more
Image via Wikipedia A new way of stopping machines overheating is being developed NANO-THIS. Nano-that. Nano-the-other. The idea that making things so small you measure their dimensions in n... Read more