Created: A wireless artificial aquatic polyp, which can remove contaminants from water

Artificial polyp in action. (A) Photographs showing the magnetic-driven attraction of suspended oil droplets toward the artificial polyp. Motion of the flexible stem is triggered by a magnet rotating underneath the structure at 300 rpm. Target capture is performed through UV light irradiation (i) and target release is triggered by blue light (ii). (B) Schematic depiction of the actuation steps for attraction, capture, and release of a target underwater.

Photographs showing the magnetic-driven attraction of suspended oil droplets toward the artificial polyp. Motion of the flexible stem is triggered by a magnet rotating underneath the structure at 300 rpm. Target capture is performed through UV light irradiation (i) and target release is triggered by blue light

Schematic depiction of the actuation steps for attraction, capture, and release of a target underwater.

Created: A wireless artificial aquatic polyp, which can remove contaminants from water

Corals in the Ocean are made up of coral polyps, a small soft creature with a stem and tentacles, they are responsible for nourishing the corals, and aid the coral’s survival by generating self-made currents through motion of their soft bodies.

Scientists from WMG at the University of Warwick, led by Eindhoven University of Technology in the Netherlands, developed a 1cm by 1cm wireless artificial aquatic polyp, which can remove contaminants from water. Apart from cleaning, this soft robot could be also used in medical diagnostic devices by aiding in picking up and transporting specific cells for analysis.

In the paper, ‘An artificial aquatic polyp that wirelessly attracts, grasps, and releases objects’ researchers demonstrate how their artificial aquatic polyp moves under the influence of a magnetic field, while the tentacles are triggered by light. A rotating magnetic field under the device drives a rotating motion of the artificial polyp’s stem. This motion results in the generation of an attractive flow which can guide suspended targets, such as oil droplets, towards the artificial polyp.

Once the targets are within reach, UV light can be used to activate the polyp’s tentacles, composed of photo-active liquid crystal polymers, which then bend towards the light enclosing the passing target in the polyp’s grasp. Target release is then possible through illumination with blue light.

Dr Harkamaljot Kandail, from WMG, University of Warwick was responsible for creating state of the art 3D simulations of the artificial aquatic polyps. The simulations are important to help understand and elucidate the stem and tentacles generate the flow fields that can attract the particles in the water.

The simulations were then used to optimise the shape of the tentacles so that the floating particles could be grabbed quickly and efficiently.

Dr Harkamaljot Kandail, from WMG, University of Warwick comments:

See Also

“Corals are such a valuable ecosystem in our oceans, I hope that the artificial aquatic polyps can be further developed to collect contaminant particles in real applications. The next stage for us to overcome before being able to do this is to successfully scale up the technology from laboratory to pilot scale. To do so we need to design an array of polyps which work harmoniously together where one polyp can capture the particle and pass it along for removal.”

Marina Pilz Da Cunha, from the Eindhoven University of Technology, Netherlands adds:

“The artificial aquatic polyp serves as a proof of concept to demonstrate the potential of actuator assemblies and serves as an inspiration for future devices. It exemplifies how motion of different stimuli-responsive polymers can be harnessed to perform wirelessly controlled tasks in an aquatic environment.”

The Latest Updates from Bing News & Google News

Go deeper with Bing News on:
Artificial aquatic polyp
  • TIME100 AI

    Project Team: Andrew R. Chow, Will Henshall, Ayesha Javed and Billy Perrigo Editors: Ayesha Javed, Kyla Mandel, Lily Rothman, Oliver Staley, and Karl Vick Copy Editors: Mark Hokoda and Jennifer ...

  • Artificial Intelligence

    By Shane Goldmacher, Tiffany Hsu and Steven Lee Myers The Silicon Valley company was again lifted by sales of its artificial intelligence chips, but it faces growing competition and heightened ...

  • I am nervous about removal of polyp

    Cervical polyps are not uncommon, and as long as the smear test comes back normal, simple polyps are usually removed in the clinic without need for further delay. The gynaecologist will wish to ...

  • Long-term Follow Up of Gallbladder Polyps

    Background and Aim: The management of gallbladder polyps (GBP) is directly linked to the early diagnosis of gallbladder cancer (GBC). This study aimed to evaluate the malignant risk of GBP.

  • Artificial Intelligence

    Artificial intelligence (AI), sometimes known as machine intelligence, refers to the ability of computers to perform human-like feats of cognition including learning, problem-solving, perception ...

Go deeper with Google Headlines on:
Artificial aquatic polyp

[google_news title=”” keyword=”artificial aquatic polyp” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]

Go deeper with Bing News on:
Soft robot
Go deeper with Google Headlines on:
Soft robot

[google_news title=”” keyword=”soft robot” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top