The size and efficiency of current photovoltaic (PV) cells means most people would probably have to cover large areas of their rooftops with such cells to even come close to meeting all their electricity needs.
Using carbon nanotubes, MIT chemical engineers have now found a way to concentrate solar energy 100 times more than a regular PV cell. Such nanotubes could form antennas that capture and focus light energy, potentially allowing much smaller and more powerful solar arrays.
Solar panels generate electricity by converting photons (packets of light energy) into an electric current. The nanotube antenna created by an MIT research team led by Michael Strano, boosts the number of photons that can be captured and transforms the light into energy that can be funneled into a solar cell.
“Instead of having your whole roof be a photovoltaic cell, you could have little spots that were tiny photovoltaic cells, with antennas that would drive photons into them,” says Strano.
The new antennas might also be useful for any other application that requires light to be concentrated, such as night-vision goggles or telescopes.