Breaking the Mold: Could Additive Manufacturing Resuscitate a Once-Proud U.S. Industry?

additive-manufacturing-3d-printing_1.jpg.pagespeed.ce.yj1yjqd_r7
This week key players from government, business and academia meet at Penn State to discuss new technologies and techniques they hope will lead to a resurgence in U.S. manufacturing

The U.S. wants back into the manufacturing game, but the industry has had to weigh this desire to create new jobs and stimulate the economy against the reality of competing against lower operating costs elsewhere in the world. Whereas traditional assembly-line work may never return stateside in a big way, manufacturers and government agencies have begun placing bets on additive manufacturing technologies—including 3-D printing—that they believe could represent the industry’s future.

Just what this future will look like and how the U.S. might get there is the subject of a technology showcase this week at The Pennsylvania State University, sponsored by the school’s Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D), along with the National Additive Manufacturing Innovation Institute (NAMII).

Additive manufacturing processes create 3-D objects based on a computer file by sequentially depositing thin layers of liquid or powdered metals, polymers or other materials on a substrate. Three-dimensional printing is either synonymous with or a subcategory of additive manufacturing, depending on whom you ask. There are significant differences between the two, however. There are 3-D printers now available for as little as $500, but they produce relatively low-quality objects, suitable as toys, jewelry and other novelties. Industrial additive machines, in contrast, cost at least $30,000—and the laser-based units that make high-quality metal products can cost as much as $1 million.

Of course, additive processes and materials are not nearly mature enough to sustain an entire industry. Layer-by-layer printing of items is simply not possible today at the speed and scale required to replace casting, molding, machining and other traditional manufacturing methods.

The greatest successes in additive manufacturing are taking place in the biomedical industry, particularly in the making of implants that take advantage of the technology’s design flexibility to match a patient’s particular needs, such as a customized hip implant, says CIMP-3D Co-Director Richard Martukanitz. “You could use the high-definition capabilities of additive manufacturing to put scaffolding on the surface of the implant so that you have greater interaction with the patient’s bone material,” he adds. “This is being done in Europe because officials have certified additive manufacturing for use in making biomedical devices and implants. The U.S. is catching up in that area.”

Read more . . .
 
via Scientific American – Larry Greenemeier
 

See Also

The Latest Streaming News: Additive Manufacturing updated minute-by-minute

Bookmark this page and come back often
 

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top