
via Stable Diffusion
Studies of a ‘future-proof’ vaccine candidate have shown that just one antigen can be modified to provide a broadly protective immune response in animals.
The studies suggest that a single vaccine with combinations of these antigens – a substance that causes the immune system to produce antibodies against it – could protect against an even greater range of current and future coronaviruses.
This is an exceptionally different vaccine technology – it’s a real turning point
Jonathan Heeney
The vaccine antigen technology, developed by the University of Cambridge and spin-out DIOSynVax in early 2020, provided protection against all known variants of SARS-CoV-2 – the virus that causes COVID-19 – as well as other major coronaviruses, including those that caused the first SARS epidemic in 2002.
The studies in mice, rabbits and guinea pigs – an important step before beginning human clinical trials, currently underway in Southampton and Cambridge – found that the vaccine candidate provided a strong immune response against a range of coronaviruses by targeting the parts of the virus that are required for replication. The vaccine candidate is based on a single digitally designed and immune-optimised antigen.
Even though the vaccine was designed before the emergence of the Alpha, Beta, Gamma, Delta and Omicron variants of SARS-CoV-2, it provided a strong protection against all of these and against more recent variants, suggesting that vaccines based on DIOSynVax antigens may also protect against future SARS-CoV-2 variants.
DIOSynVax (Digitally Immune Optimised Synthetic Vaccines) uses a combination of computational biology, protein structure, immune optimisation, and synthetic biology to maximise and widen the spectrum of protection that vaccines can provide against global threats including existing and future virus outbreaks. Its vaccine candidates can be deployed in a variety of vaccine delivery and manufacturing platforms. The results are reported in the journal Nature Biomedical Engineering.
Since the SARS outbreak in 2002, coronavirus ‘spillovers’ from animals to humans have been a threat to public health, and require vaccines that provide broad-based protection. “In nature, there are lots of these viruses just waiting for an accident to happen,” said Professor Jonathan Heeney from Cambridge’s Department of Veterinary Medicine, who led the research. “We wanted to come up with a vaccine that wouldn’t only protect against SARS-CoV-2, but all its relatives.”
All currently available vaccines, such as the seasonal flu vaccine and existing Covid-19 vaccines, are based on virus strains or variants that arose at some point in the past. “However, viruses are mutating and changing all the time,” said Heeney. “Current vaccines are based on a specific isolate or variant that occurred in the past, it’s possible that a new variant will have arisen by the time we get to the point that the vaccine is manufactured, tested and can be used by people.”
Heeney’s team has been developing a new approach to coronavirus vaccines, by targeting their ‘Achilles heel’. Instead of targeting just the spike proteins on the virus that change to evade our immune system, the Cambridge vaccine targets the critical regions of the virus that it needs to complete its virus life cycle. The team identifies these regions through computer simulations and selecting conserved structurally engineered antigens. “This approach allows us to have a vaccine with a broad effect that viruses will have trouble getting around,” said Heeney.
Using this approach, the team identified a unique antigen structure that gave a broad-based immune responses against different Sarbeco coronaviruses, the large group of SARS and SARS-CoV-2 related viruses that occur in nature. The optimised antigen is compatible with all vaccine delivery systems: the team administered it as a DNA immunogen (in collaboration with the University of Regensburg), a weakened version of a virus (Modified Vaccinia Ankara, supported by ProBiogen), and as an mRNA vaccine (in collaboration with Ethris). In all cases, the optimised antigen generated a strong immune response in mice, rabbits and guinea pigs against a range of coronaviruses. Based on a strong safety profile, the “first-in-human” clinical trials are ongoing at Southampton and Cambridge NIHR Clinical Research Facilities. The last booster immunisations will conclude by the end of September.
“Unlike current vaccines that use wild-type viruses or parts of viruses that have caused trouble in the past, this technology combines lessons learned from nature’s mistakes and aims to protect us from the future,” said Heeney. “These optimised synthetic antigens generate broad immune responses, targeted to the key sites of the virus that can’t change easily. It opens the door for vaccines against viruses that we don’t yet know about. This is an exceptionally different vaccine technology – it’s a real turning point.”
Original Article: New vaccine technology could protect from future viruses and variants
More from: University of Cambridge | University of Regensburg
The Latest Updates from Bing News
Go deeper with Bing News on:
Vaccine antigen technology
- Anixa Biosciences and Cleveland Clinic Present Positive New Data from Phase 1 Study of Breast Cancer Vaccine
Antigen-specific T cell responses were observed at all dose levels –– IFNγ and IL-17, immune-mediated biomarkers of T cell activation, ...
- This Boulder vaccine maker has caught the attention and funding of the Bill & Melinda Gates Foundation
Just a few months after vaccine maker VitriVax notched a $29 million contract with the U.S. Department of Defense, the Bill & Melinda Gates Foundation has awarded the company $5 million to work on the ...
- VitriVax receives $5M grant from Gates foundation
VitriVax, a company that is developing vaccine technology, has received a $5 million, two-year grant from the Bill & Melinda Gates Foundation.
- Covid study: mRNA vaccines could be fine-tuned
The revolutionary messenger ribonucleic acid (mRNA) technology in some Covid vaccines given to millions of people could be fine-tuned for even greater accuracy, UK scientists say. Genetic instructions ...
- Africa must take control of its vaccine manufacturing to protect against a new pandemic
Much has been written about lessons learned from the Covid-19 pandemic. Although debate remains about the global response, on one issue there is clear consensus: the need for vaccine manufacturing ...
Go deeper with Bing News on:
DIOSynVax
- DIOSynVax’s Post
DIOSynVax is hiring. We are looking for a new Laboratory Assistant to join our team at the Department of Veterinary Medicine in Cambridge UK . If you have an interest in vaccine development and ...
- 'Scientists are future proofing us against new Covid mutations with multipurpose vaccines'
Cambridge’s DIOSynVax (Digitally Immune Optimised Synthetic Vaccines) widens and maximises the spectrum of protection that vaccines can provide against global threats, including existing and ...
- Promising trial results for universal coronavirus vaccine designed in Cambridge
Studies in animals of vaccine antigen technology developed by the University of Cambridge and its spin-out DIOSynVax have shown it is capable of providing protection against all known variants of the ...
- Needle-free Covid vaccination trials taking place in Cambridge
The vaccine, administered through a jet of air, was developed by Prof Jonathan Heeney of Cambridge University and chief executive of DIOSynVax. Volunteers recruited last month are being vaccinated ...
- Cambridge to receive government grant to develop ‘future proof’ Covid vaccine
The spinout biotech company DIOSynVax is led by Darwin College Professor Jonathan Heeney, Head of the Laboratory of Viral Zoonotics at the University. He said: “Our approach is to be ahead of the next ...