
Researchers from Gwangju Institute of Science and Technology (GIST), Korea have developed graphene-based conductive hydrogels as bioelectrode materials for overcoming the challenges associated with traditional, metal-based bioelectrodes. These conductive hydrogels are injectable, skin-compatible, easy to use, and demonstrate excellent signal transmission. Moreover, their controllable degradability can allow the development of high performing, convenient bioelectrodes with advanced applicability.
The new graphene-based conductive hydrogel electrodes offer convenience of use, controllable degradation, and excellent signal transmission
Implantable bioelectrodes are electronic devices that can monitor or stimulate biological activity by transmitting signals to and from living biological systems. Such devices can be fabricated using various materials and techniques. But, because of their intimate contact and interactions with living tissues, selection of the right material for performance and biocompatibility is crucial. In recent times, conductible hydrogels have attracted great attention as bioelectrode materials owing to their flexibility, compatibility, and excellent interaction ability. However, the absence of injectability and degradability in conventional conductive hydrogels limits their convenience of use and performance in biological systems.
Against this backdrop, researchers from Korea have now developed graphene-based conductive hydrogels possessing injectability and tunable degradability, furthering the design and development of advanced bioelectrodes. The study was led by Professor Jae Young Lee from Gwangju Institute of Science and Technology (GIST) and was published in the Small journal on 24 February 2023.
Explaining the rationale for their study, Prof. Lee says, “Traditional implantable electrodes frequently cause several problems, such as large incision for implantation and uncontrolled stability in the body. In contrast, conductive hydrogel materials allow minimally invasive delivery and control over the bioelectrode’s functional in vivo lifespan and are thus highly desired.”
To synthesize the injectable conductive hydrogels (ICHs), the researchers used thiol-functionalized reduced graphene oxide (F-rGO) as the conductive component due to its large surface area and excellent electrical and mechanical properties. They selected dimaleimide (PEG-2Mal)- and diacrylate (PEG-2Ac)-functionalized polyethylene glycol as prepolymers to facilitate the development of ICHs that are stable and hydrolysable, respectively. These prepolymers were then subjected to thiol-ene reactions with poly (ethylene glycol)-tetrathiol (PEG-4SH) and F-rGO.
ICHs made with PEG-2Ac were degradable (DICH), while those with PEG-2Mal were stable (SICH). The researchers found that the novel ICHs outperformed various existing ones by binding extremely well to tissues and recording the highest signals. Under in vitro conditions (outside a living organism), SICH did not degrade for a month, while DICH showed gradual degradation from the third day onwards.
When implanted onto mouse skin, DICH disappeared after three days of administration, whereas SICH retained its shape for up to 7 days. In addition to controlled degradability, both ICHs were skin-compatible.
Further, the team evaluated the ability of the ICHs to record in vivo electromyography signals in rat muscle and skin. Both SICH and DICH recorded high-quality signals and surpassed the performance of traditional metal electrodes. The SICH recordings could be monitored up to three weeks, whereas DICH signals were completely lost after five days. These findings suggest the applicability of SICH electrodes for long-term signal monitoring and that of DICH for temporary use requiring no surgical removal.
Summarising these results, Prof. Lee says, “The novel graphene-based ICH electrodes developed by us incorporate features like high signal sensitivity, simplicity of use, minimal invasiveness, and tunable degradability. Altogether, these properties can assist in the development of advanced bioelectronics and functional implantable bioelectrodes for a variety of medical conditions, such as neuromuscular diseases and neurological disorders.”
We certainly hope this development ushers in a new era of therapeutic and diagnostic advancement soon!
Original Article: Gwangju Institute of Science and Technology Researchers Develop Injectable Bioelectrodes with Tunable Lifetimes
More from: Gwangju Institute of Science and Technology
The Latest Updates from Bing News
Go deeper with Bing News on:
Injectable bioelectrodes
- South Carolina obtains drugs to carry out executions by lethal injection after 12-year pause
Officials at the South Carolina Department of Corrections say they made “more than 1,300 contacts in search of lethal injection drugs”, according to the governor. The state did not say where ...
- Injectable Pain Medication Market 2023 | How the Market Will Witness Substantial Growth in the Upcoming years
Recent Analysis on the Surge of the Injectable Pain Medication Market (2023-2028) (Latest 83 Report Pages) With Application (Hospital, Clinics, Recovery Center), by Type (Nonsteroidal Anti ...
- Sterile Injectable Drugs Market 2023 Report Revealing the Latest Trends and Outlook for Advancements by 2030
The global Sterile Injectable Drugs market size was valued at USD 3627.69 million in 2022 and is expected to expand at a CAGR of 8.06 Percentage during the forecast period, reaching USD 5775.54 ...
- Challenges and Opportunities: Navigating the Injectable Drug Delivery Devices Market 2023
The Injectable Drug Delivery Devices Global Market Report 2023 provides essential data and insights for strategists, marketers, and senior management to assess and navigate the market effectively.
- What injectable medications can people use instead of statins?
People take statins to manage and reduce high cholesterol. However, powerful injectable alternatives for cholesterol management, known as PCSK9 inhibitors, have also become available in recent years.
Go deeper with Bing News on:
Hydrogel electrodes
- I’m plagued by agonising period pains so tested 4 popular relief gadgets – 2 clear winners eased my throbbing cramps
LIKE many women, I experience severe discomfort during my periods (to put it mildly). From dull and achy cramps right up to intense pain that feel unmanageable. Since the tender age of 12 when my ...
- Technique for 3D printing metals at the nanoscale reveals surprise benefit
Caltech researchers revealed that they had developed a new fabrication technique for printing microsized metal parts containing features about as thick as three or four sheets of paper.
- Schulich Researchers Energize Wearable Tech Advancements with Hydrogel Nanocomposite Breakthrough
As the popularity of wearable devices continues to rise, researchers at the University of Calgary are tackling some of the biggest challenges facing the technology.Chief among them is enhancing self-p ...
- Tattooing Gold on Live Cells for Smart Device Integration
Their approach, which is cost-effective, also can be used to attach other nanoscale components, such as electrodes, antennas and circuits, to hydrogels or living organisms, they said. In future ...
- Flint wants to disrupt the battery industry with paper
Lithium-ion batteries have become the standard in the electrification revolution. The only problem is, lithium is expensive, time-consuming and labor-intensive to extract. Usually they swap out some ...