
XRD patterns of the sample. a) Large area reciprocal space maps (HL projection). The scattered intensity is represented with a temperature-colored scale. b) The 3D representation of the 00L specular rod. In this representation, the scattering ellipsoids are obtained from the fitting of individual peaks in both the HL and KL projections. c) The conventional ?–2? spectrum.
University of Minnesota-led discovery has potential to make devices with ‘unmatched’ energy efficiency and memory storage density
University of Minnesota Twin Cities researchers, along with a team at the National Institute of Standards and Technology (NIST), have developed a breakthrough process for making spintronic devices that has the potential to become the new industry standard for semiconductors chips that make up computers, smartphones, and many other electronics. The new process will allow for faster, more efficient spintronics devices that can be scaled down smaller than ever before. ??
The researchers’ paper is published in Advanced Functional Materials, a peer-reviewed, top-tier materials science journal. The researchers have also worked with University of Minnesota Technology Commercialization and NIST to patent this technology, along with several other patents related to this research.
“We believe we’ve found a material and a device that will allow the semiconducting industry to move forward with more opportunities in spintronics that weren’t there before for memory and computing applications,” said Jian-Ping Wang, senior author of the paper and professor and Robert F. Hartmann Chair in the University of Minnesota Department of Electrical and Computer Engineering. “Spintronics is incredibly important for building microelectronics with new functionalities.”
Wang said Minnesota has been leading this effort in a big way for more than 10 years with strong support by the Semiconductor Research Corporation (SRC), Defense Advanced Research Projects Agency (DARPA), and the National Science Foundation (NSF).
This discovery also opens up a new vein of research for designing and manufacturing spintronic devices for the next decade.
“This means Honeywell, Skywater, Globalfoundries, Intel, and companies like them can integrate this material into their semiconductor manufacturing processes and products,” Wang said. “That’s very exciting because engineers in the industry will be able to design even more powerful systems.”
The semiconductor industry is constantly trying to develop smaller and smaller chips that can maximize energy efficiency, computing speed, and data storage capacity in electronic devices. Spintronic devices, which leverage the spin of electrons rather than the electrical charge to store data, provide a promising and more efficient alternative to traditional transistor-based chips. These materials also have the potential to be non-volatile, meaning they require less power and can store memory and perform computing even after you remove their power source.
Spintronic materials have been successfully integrated into semiconductor chips for more than a decade now, but the industry standard spintronic material, cobalt iron boron, has reached a limit in its scalability. Currently, engineers are unable to make devices smaller than 20 nanometers without losing their ability to store data.
The University of Minnesota researchers have circumvented this problem by showing that iron palladium, an alternative material to cobalt iron boron that requires less energy and has the potential for more data storage, can be scaled down to sizes as small as five nanometers.
And, for the first time, the researchers were able to grow iron palladium on a silicon wafer using an 8-inch wafer-capable multi-chamber ultrahigh vacuum sputtering system, a one-of-a-kind piece of equipment among academic institutions across the country and only available at the University of Minnesota.
“This work is showing for the first time in the world that you can grow this material, which can be scaled down to smaller than five nanometers, on top of a semiconductor industry-compatible substrate, so-called CMOS+X strategies,” said Deyuan Lyu, first author on the paper and a Ph.D. student in the University of Minnesota Department of Electrical and Computer Engineering.
“Our team challenged ourselves to elevate a new material to manufacture spintronic devices needed for the next generation of data-hungry apps,” said Daniel Gopman, a staff scientist at NIST and one of the key contributors to the research. “It will be exciting to see how this advance drives further growth of spintronics devices within the semiconductor chip technology landscape.”
Original Article: Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry
More from: University of Minnesota | National Institute of Standards and Technology
The Latest Updates from Bing News
Go deeper with Bing News on:
Spintronics manufacturing
- Electronics Explained With Mechanical Devices
[Steve Mould] shows us a different take – the experimentation kit called Spintronics, which goes the mechanical way, using chains, gears, springs and to simulate the flow of current and the ...
- Wichita Manufacturing News
Catholic Family Federal Credit Union has been providing the Catholic community across the Wichita diocese… Blackmore and Glunt, Inc., (www.b-g.com) has agreed to ...
- Spintronics articles from across Nature Portfolio
Spintronics is the use of a fundamental property of particles known as spin for information processing. In many ways, spintronics is analogous to electronics, which instead uses the electrical ...
- United States Manufacturing PMI
In the United States, the Markit Manufacturing Purchasing Managers’ Index measures the performance of the manufacturing sector and is derived from a survey of 600 industrial companies.
- Industrial Manufacturing
Also, ever-evolving complexities in buyer behavior and competitive pressure make it imperative for Industrial Manufacturing companies to explore new opportunities of incremental revenue growth. Now, ...
Go deeper with Bing News on:
Spintronics
- Optically Addressing Exciton Spin and Pseudospin in Nanomaterials for Spintronics Applications
Oriented exciton spins that can be generated and manipulated optically are of interest for a range of applications, including spintronics, quantum information science, and neuromorphic computing ...
- Spintronics-based Computing - Softcover
This book provides a comprehensive introduction to spintronics-based computing for the next generation of ultra-low power/highly reliable logic. It will cover aspects from device to system-level, ...
- Contemporary Topics in Semiconductor Spintronics - Hardcover
The success of spintronics — the science and technology of storing, processing, sensing and communicating information using the quantum mechanical spin degree of freedom of an electron — is critically ...
- NVE Corp. Falls 17%: A Spintronics Pioneer With Promising Investment Potential
Despite the revenue fluctuations, we think that NVE Corporation is a pioneer in spintronics technology and has a competitive edge in the growing spintronics market. The company has strong ...
- High speed spintronics from MHz to THz
Spintronics is one of them and deals with the magnetic moment of the electron called spin, in addition to the charge which is used in “classical” electronics. Various challenges and fields of research ...