
As coal-based power plants are still the main resource for power generation, various technologies, like air staging and swirl flow, have been proposed to reduce the pollutants in their emission while maximizing their combustion performance. However, no single method is known to optimize both these aspects. Now, researchers have explored the combined effects of air staging and swirl flow to this end.
Credit: Gyungmin Choi from Pusan National University, Korea
The researchers perform experiments and simulations to understand how the new technologies help reduce pollution while maximizing combustion efficiency
Coal-fired power plants have been in place for a long time to meet the global demands for power generation. Needless to say, there are environmental and human health concerns to be addressed on this front. While there are ongoing efforts to transition to renewable energy resources, coal-fired power plants may not become obsolete just yet. Against this backdrop, it is pertinent to explore how the efficiency of these coal-fired boilers can be improved while mitigating their harmful effects on the environment, namely greenhouse gas emissions, acid rain, and photochemical smog generation, and the human health.
To this end, various combustion methods like air an staging and swirl flow have been proposed. However, the efficacy of these technologies in mitigating the pollutant emissions while maximizing the burnout performance has remained unclear. Now, in a recent study made available online on 31 December 2022 and to be published in Volume 268, Issue 1 of the journal Energy on 01 April 2023, an international team of researchers led by Prof. Gyungmin Choi of Pusan National University, Korea analyzed the effectiveness of combining swirl flow and air staging in improving the combustion performance and reducing pollution. “The exhaust tube vortex (ETV) structure accompanying the swirl flow improves flame stability and combustion performance, but has the disadvantage of generating a large amount of NOx emissions. In contrast, air staging technology creates a fuel-rich environment in the primary combustion zone, which has a positive effect on NOx reduction but negatively affects combustion performance,” explains Prof. Choi. “Therefore, if these two technologies are appropriately combined and applied in real life, a synergistic effect that reduces the emission of air pollutants as well as improves combustion performance can be expected.”
Accordingly, the team employed both simulations and experiments to study the combined effects of different swirl configurations and air staging within a 16-kWth retrofitted down-fired pulverized coal boiler. The coal boiler was composed of three sections: the swirl burner, the boiler, and the exhaust pipe. For staged combustion, staged air was divided into two sides and injected tangentially into the boiler. Liquified petroleum (LPG) gas was used for preheating and flame stabilization. The staged-air and LPG flow rates were regulated, and for each setting, the temperature was measured using thermocouples. Additionally, the amount of gas-phase species was measured using a multi-gas analyzer.
Air staging with two swirl configurations, namely co-swirling and counter-swirling flames, were evaluated to understand which of these is more beneficial in terms of reducing pollutant emissions. In the case of the co-swirling burner, where the air and fuel circulated in the same sense, the coal particles were evenly distributed owing to the formation of inner circulation zone and the ETV–two vital features for optimizing the design of coal-fired boilers.
Further, the team observed an even burnout zone for the co-swirling configuration, which ensured complete combustion of the fuel, reducing the gas species emissions. It also facilitated an increased conversion of chemical energy into thermal energy, boosting the combustion efficiency. In contrast, counter-swirling burners showed uneven coal particle distribution, uneven burnout, and increased NOx emissions, suggesting that a co-swirling configuration was the better option. Additionally, the team showed that air staging technology reduced the environmental costs from $0.003 to $0.015 per day.
Overall, the insights from this study could prove to be extremely valuable in solving the environmental problems and health hazards related to coal-fired power plants. “We have identified and studied the structure and flame of the ETV for the first time, and will continue researching and striving to utilize it in the combustion-based industry,” concludes an optimistic Prof. Choi.
Original Article: Pusan National University researchers examine combined effects of two combustion technologies on the emission of coal-fired boilers
More from: Pusan National University
The Latest Updates from Bing News
Go deeper with Bing News on:
Coal combustion methods
- Novel process extracts rare earth elements from waste
Rare earth elements (REE), a group of 17 metallic elements, are in nearly every piece of technology, including cell phones, televisions, computers and almost every part of a vehicle. The demand for ...
- Polish coal miners protest EU methane reduction regulations
Polish coal miners angered by a European Union directive aiming to reduce methane emissions protested noisily Friday before the EU office in Warsaw saying it will deprive them of their jobs. Some 300 ...
- Exclusive Study on Coal Gas Generator Market [2023-2030] | Comprehensive Report on Industry Trends & Forecast
Global Coal Gas Generator Market Status and Prospect | New Report [2023-2030] of 130 Pages | Industry report provides ...
- 2023-2026 Water Coal Slurry Market Size and Industry Share Analysis
Mar 21, 2023 (The Expresswire) -- "Final Report will add the analysis of the impact of COVID-19 on this industry." The Global Water Coal Slurry ...
- 11 Best Coal Mining Stocks To Buy Today
Best Coal Mining Stocks To Buy Today 11. Alliance Resource Partners, L.P. (NASDAQ:ARLP) Number of Hedge Fund Holders: 6 Alliance Resource Partners, L.P. (NASDAQ:ARLP) is involved in the production ...
Go deeper with Bing News on:
Coal-fired power plants
- Power Plant Boiler Market to Reach $31.1 Billion, Globally, by 2031 at 5.1% CAGR: Allied Market Research
Surge in the demand for energy, technological advancements in power plant boiler designs and materials, increase in awareness of environmental issues, and the requirement for sustainable energy ...
- Pakistan to be able to produce low price electricity by using coal fired power plants
Dr. Mirza Ikhtiyar Baig ( Economist):Coal is indigenous source of Pakistan. We have abundant source of coal and able to produce electricity using the source of coal. We were unable to tap the source ...
- Power Generation Up To 100Mw: DoE eases curbs on coal, gas-run plants
The Department of Environment in its new Environmental Conservation Rules has exempted small coal and gas power plants from Environmental Impact Assessment (EIA), raising concerns among ...
- PM inaugurates 1,650 MW coal-fired power plants in Thar
Prime Minister Shehbaz Sharif Wednesday inaugurated two coal-fired power plants in Tharparker with a capacity of 1,650 megawatt of electricity generation, saying the projects would eventually ...
- PM inaugurates two coal-fired power plants in Thar
Announces hospital for region; Bilawal says with its cheap electricity Thar has started changing Pakistan; Sindh CM says local ...