
The use of sound waves to create a pressure field to print particles.
Kai Melde, MPI for Medical Research, Heidelberg University
Scientists introduce a new technology to assemble matter in 3D using sound waves for 3D printing
Scientists from the Micro, Nano and Molecular Systems Lab at the Max Planck Institute for Medical Research and the Institute for Molecular Systems Engineering and Advanced Materials at Heidelberg University have created a new technology to assemble matter in 3D. Their concept uses multiple acoustic holograms to generate pressure fields with which solid particles, gel beads and even biological cells can be printed. These results pave the way for novel 3D cell culture techniques with applications in biomedical engineering. The results of the study were published in the journal Science Advances on February 08.
Additive manufacturing or 3D printing enables the fabrication of complex parts from functional or biological materials. Conventional 3D printing can be a slow process, where objects are constructed one line or one layer at a time. Researchers in Heidelberg and Tübingen now demonstrate how to form a 3D object from smaller building blocks in just a single step.
“We were able to assemble microparticles into a three-dimensional object within a single shot using shaped ultrasound”, says Kai Melde, postdoc in the group and first author of the study. “This can be very useful for bioprinting. The cells used there are particularly sensitive to the environment during the process”, adds Peer Fischer, Professor at Heidelberg University.
Sound waves exert forces on matter – a fact that is known to any concert goer who experiences the pressure waves from a loudspeaker. Using high-frequency ultrasound, which is inaudible to the human ear, the wavelengths can be pushed below a millimeter into the microscopic realm, which is used by the researcher to manipulate very small building blocks, like biological cells.
In their previous studies Peer Fischer and colleagues showed how to form ultrasound using acoustic holograms – 3D-printed plates, which are made to encode a specific sound field. Those sound fields, they demonstrated, can be used to assemble materials into two-dimensional patterns. Based on this the scientists devised a fabrication concept.
With their new study the team was able to take their concept a step further. They capture particles and cells freely floating in water and assemble them into three-dimensional shapes. On top of that, the new method works with a variety of materials including glass or hydrogel beads and biological cells. First author Kai Melde says that “the crucial idea was to use multiple acoustic holograms together and form a combined field that can catch the particles”. Heiner Kremer, who wrote the algorithm to optimize the hologram fields, adds: “The digitization of an entire 3D object into ultrasound hologram fields is computationally very demanding and required us to come up with a new computation routine”.
The scientists believe that their technology is a promising platform for the formation of cell cultures and tissues in 3D. The advantage of ultrasound is that it is gentle for using biological cells and that it can travel deep into tissue. This way it can be used to remotely manipulate and push cells without harm.
Original Article: Creating 3D objects with sound
More from: Max Planck Institute for Medical Research | Heidelberg University
The Latest Updates from Bing News
Go deeper with Bing News on:
Acoustic 3D printing
- Graphene oxide makes 3D printed concrete stronger, smarter, study finds
Graphene oxide has the potential to make 3D-printed concrete more cost-effective and sustainable, according to a new study by researchers from RMIT University and the University of Melbourne.
- Laser additive manufacturing: Listening for defects as they happen
Researchers from EPFL have resolved a long-standing debate surrounding laser additive manufacturing processes with a pioneering approach to defect detection.
- M. Holland 3D Printing
M. Holland’s 3D Printing Group offers unbiased consultative expertise on applications, materials and equipment for additive manufacturing. We also offer industrial 3D printing services in our ...
- Best 3D Printer for Beginners 2023 – best starter 3D printers
A quick look online though and it’s easy to be flabbergasted by the wealth of choice out there, so we have sat down and picked the five best beginner 3D printers on the market this year whether you ...
- Creating 3D-printed materials that shrink more precisely
From houses to hearing aids, three-dimensional (3D) printing is revolutionizing how we create complex structures at scale. Zooming down to the micro and nano levels, a process known as two-photon ...
Go deeper with Bing News on:
Acoustic holograms
- WiMi Announced Acoustic Hologram Reconstruction Based on Unsupervised Wavefield Deep Learning
The key to WiMi's unsupervised wavefield deep learning-based acoustic hologram reconstruction is it can automatically reconstruct holograms of acoustic data without supervised or human intervention.
- WiMi Announced Acoustic Hologram Reconstruction Based on Unsupervised Wavefield Deep Learning
("WiMi" or the "Company"), a leading global Hologram Augmented Reality ("AR") Technology provider, today announced that it developed an acoustic hologram reconstruction based on unsupervised wavefield ...