
Researchers at UW–Madison have engineered silicone nanoparticles to cross the blood-brain barrier in mice to deliver brain-wide gene editing therapy for Alzheimer’s disease.
PHOTO: JEFF MILLER
Gene therapies have the potential to treat neurological disorders like Alzheimer’s and Parkinson’s diseases, but they face a common barrier — the blood-brain barrier. Now, researchers at the University of Wisconsin–Madison have developed a way to move therapies across the brain’s protective membrane to deliver brain-wide therapy with a range of biological medications and treatments.
“There is no cure yet for many devastating brain disorders,” says Shaoqin “Sarah” Gong, UW–Madison professor of ophthalmology and visual sciences and biomedical engineering and researcher at the Wisconsin Institute for Discovery. “Innovative brain-targeted delivery strategies may change that by enabling noninvasive, safe and efficient delivery of CRISPR genome editors that could, in turn, lead to genome-editing therapies for these diseases.”
CRISPR is a molecular toolkit for editing genes (for example, to correct mutations that may cause disease), but the toolkit is only useful if it can get through security to the job site. The blood-brain barrier is a membrane that selectively controls access to the brain, screening out toxins and pathogens that may be present in the bloodstream. Unfortunately, the barrier bars some beneficial treatments, like certain vaccines and gene therapy packages, from reaching their targets because in lumps them in with hostile invaders.
Injecting treatments directly into the brain is one way to get around the blood-brain barrier, but it’s an invasive procedure that provides access only to nearby brain tissue.
“The promise of brain gene therapy and genome-editing therapy relies on the safe and efficient delivery of nucleic acids and genome editors to the whole brain,” Gong says.
In a study recently published in the journal Advanced Materials, Gong and her lab members, including postdoctoral researcher and first author of the study Yuyuan Wang, describe a new family of nano-scale capsules made of silica that can carry genome-editing tools into many organs around the body and then harmlessly dissolve.
By modifying the surfaces of the silica nanocapsules with glucose and an amino acid fragment derived from the rabies virus, the researchers found the nanocapsules could efficiently pass through the blood-brain barrier to achieve brain-wide gene editing in mice. In their study, the researchers demonstrated the capability of the silica nanocapsule’s CRISPR cargo to successfully edit genes in the brains of mice, such as one related to Alzheimer’s disease called amyloid precursor protein gene.
Because the nanocapsules can be administered repeatedly and intravenously, they can achieve higher therapeutic efficacy without risking more localized and invasive methods.
The researchers plan to further optimize the silica nanocapsules’ brain-targeting capabilities and evaluate their usefulness for the treatment of various brain disorders. This unique technology is also being investigated for the delivery of biologics to the eyes, liver and lungs, which can lead to new gene therapies for other types of disorders.
Original Article: New nanoparticles deliver therapy brain-wide, edit Alzheimer’s gene in mice
More from: University of Wisconsin-Madison
The Latest Updates from Bing News
Go deeper with Bing News on:
Brain-targeted delivery strategies
- Targeted Drug Delivery System Market Revenue Analysis and Updates till 2030
Global "Targeted Drug Delivery System Market" 2023: - The report on the Targeted Drug Delivery System Market encompasses extensive information about the factors propelling market growth and the ...
- Targeted ultrasound can change brain functions for up to an hour after intervention
The targeted use of ultrasound technology can bring about significant changes in brain function that could pave the way towards treatment of conditions such as depression, addiction, or anxiety ...
- Targeted ultrasound changes brain function & could treat mental illness
A new study has found that using ultrasound to target specific areas of the brain causes functional changes ... think about using ultrasound for more targeted interventions in people with a ...
- Four Strategies for Handling Your Brain's 'Waiting Mode'
If you are unable to focus on anything but the upcoming event, these four coping strategies can help ... that it seems as if all of your available brain power is being occupied by your worries ...
- Four Strategies for Handling Your Brain's 'Waiting Mode'
If you are unable to focus on anything but the upcoming event, these four coping strategies can help ... that it seems as if all of your available brain power is being occupied by your worries ...
Go deeper with Bing News on:
Silicone nanoparticles
- Silicone Molds For Stove-Top Metal Casting
Seems like most of the metal casting projects we feature are aluminum in sand molds, though, so it’s refreshing to see a casting project using silicone molds to cast low-melting point metals.
- Silicon Valley News
© 2023 American City Business Journals. All rights reserved. Use of and/or registration on any portion of this site constitutes acceptance of our User Agreement ...
- Silicone Rubber for Medical Device Applications
A review of material properties and processing characteristics highlights silicone's enduring popularity for fabricating a range of medical products. For those involved in medical product development, ...
- Injection Molding Silicone Parts For Under $50
You’ve likely seen many tutorials on making silicone parts using 3D printed molds online. The vast majority of these methods use a simple pour method to fill the mold. This relies on careful ...
- Silicon Valley Startups News
Ranked by Sq. ft. of data center space in Silicon Valley as of Spring 2023 Ranked by Most current revenue Ranked by Sq. ft. of data center space in Silicon Valley as of Spring 2022 Creative ...