Micelles, used in pharmaceutical industry, burst upon contact with virus, sending immediate alert
Scientists have shown that they can detect SARS-CoV-2, the virus that causes COVID-19, in the air by using a nanotechnology-packed bubble that spills its chemical contents like a broken piñata when encountering the virus.
Such a detector could be positioned on a wall or ceiling, or in an air duct, where there’s constant air movement, to alert occupants immediately when even a trace level of the virus is present.
The heart of the nanotechnology is a micelle, a molecular structure composed of oils, fats and sometimes water with inner space that can be filled with air or another substance. Micelles are often used to deliver anticancer drugs in the body and are a staple in soaps and detergents. Almost everyone has encountered a micelle in the form of soap bubbles.
A team of scientists at the Department of Energy’s Pacific Northwest National Laboratory created a new kind of micelle, one that is stamped on the surface with copies of an imprinted particle for SARS-CoV-2.
The team filled micelles with a salt capable of creating an electronic signal but that is quiescent when packed inside a micelle. When a viral particle interacts with one of the imprinted receptors on the surface, the micelle pops open, spilling the salt and sending out an electronic signal instantly.
The system acts like a signal magnifier, translating the presence of one viral particle into 10 billion molecules that together create a detectable signal. The developers say that the detector has advantages over today’s technologies; it produces a signal faster, requires a much lower level of viral particles, or produces fewer errors.
The team published its findings online Oct. 25 in MRS Communications.
“There is a need for this kind of low-cost detection system,” said PNNL scientist Lance Hubbard, a nanotechnology specialist and an author of the paper. “Perhaps it could be implemented in schools, or in hospitals or emergency rooms before patients have been fully assessed—anywhere you need to know immediately that the virus is present.”
PNNL’s micelle technology is the product of an arduous chain of 279 separate chemical steps developed by first author Samuel Morrison together with Hubbard and other PNNL scientists.

When specially prepared micelles (pepper-sized particles on the left) interact with a molecular analog of the Covid-causing virus (right), the micelles explode, ejecting their contents at 200 miles per hour. The yellowish-brown cloud that results is part of an electronic signal that the virus is present. (Video by Caleb Allen | Pacific Northwest National Laboratory)
COVID detection: one in billions
The team estimates that the technology can pluck one viral particle out of billions of other particles. The detector is so sensitive that the team had a challenging time identifying the lower limit. The team used both inactivated SARS-CoV-2 viral particles and the virus’s spike protein in its tests.
While the technology detects the virus within a millisecond, the device takes an additional minute to run quality-control software to confirm the signal and prevent false alarms.
Micelles can be delicate, like a soap bubble from a child’s wand. But, under certain circumstances, scientists can make hardier micelles that spill their contents at just the right time and place—for instance, these micelles that burst open when a viral particle is detected.
The PNNL micelle is bilayer, with one polymer-coated micelle inside the other, and the entire structure immersed in water. Each micelle is about 5 microns wide. On the outer surface are several imprinted particles, made of silica, about 500 nanometers wide. Each imprint is an opportunity for a COVID-causing viral particle to bind, causing the bilayer micelle to pop open.
“Combining micelles with a technology to imprint or stamp them is not something many people have done before,” said Hubbard. “Imprinting a molecule with our molecule of interest inserts a vulnerability into the micelle—which is what we want in this case.”
Morrison, a former Marine, began this line of work hoping to develop a new way to help soldiers quickly detect explosives in combat. He connected with Hubbard, an expert in nanosynthesis. They switched the focus of the project to SARS-CoV-2 when the pandemic hit. Other possible uses of the technology include detection of fentanyl and environmental toxins.
Battelle, which manages and operates PNNL for DOE, has filed for a patent on the technology. The scientists say the technology needs to be developed further, perhaps with a licensing partner, before it can be deployed broadly.
Original Article: COVID-Causing Virus in Air Detected with High-Tech Bubbles
More from: Pacific Northwest National Laboratory
The Latest Updates from Bing News
Go deeper with Bing News on:
Micelle-based COVID detection
- Rapid Microbiology Detection and Enumeration System Market : Global Market Growth, New Trends, COVID-19 Impact and Forecast 2023 To 2028
Feb 01, 2023 (The Expresswire) -- Final Report will add the analysis of the impact of Russia-Ukraine War and COVID-19 on this ... global Rapid Microbiology Detection and Enumeration System market ...
- Covid-19
Latest news on the coronavirus, which has killed millions during a global pandemic. Three years after the start of the pandemic, the size and scale of Covid-related fraud is staggering.
- ‘Microclots’ could help solve the long COVID puzzle
For more than two years, scientists have been trying to understand why millions of people across the world are experiencing lingering symptoms despite recovering from their COVID-19 infection.
- The Downsides of Financial Incentives to Diagnose COVID | Opinion
When Congress passed the Coronavirus Response and Relief Supplemental Appropriations Act in December 2020, it authorized the Federal Emergency Management Agency (FEMA) to reimburse up to $2 ...
- January Covid detection spike in Burlington wastewater draws concern
READ THE FULL STORY:January Covid detection spike in Burlington wastewater draws concern CHECK OUT WPTZ:Get the latest Plattsburgh and Burlington news of the day. See the stories making headlines ...
Go deeper with Bing News on:
COVID detection
- The 'Kraken' subvariant XBB.1.5 sounds scary. But behind the headlines are clues to where COVID's heading
The XBB.1.5 subvariant, known informally as "Kraken," is the latest in a menagerie of Omicron subvariants to dominate the headlines, following increasing detection in the United States and United ...
- Early COVID-19 variants remain in deer populations
While COVID-19 variants Alpha, Gamma and Delta are no longer circulating among humans, they continue to spread in white-tailed deer.
- Study: Extinct COVID-19 variants circulate among New York deer
Early COVID-19 variants that no longer circulate among humans are surging among New York's white-tailed deer, raising questions about whether the mammals could become a reservoir for extinct versions ...
- Attacking COVID-19’s moving antibody target
An in-depth study from a research team at the Wyss Institute for Biologically Inspired Engineering at Harvard University demonstrates that the Institute’s portable electrochemical sensing technology ...
- Establishment of a rapid and accurate SARS-CoV-2 antigen detection kit able to identify Omicron mutants
According to the WHO (World Health Organization), rapid antigen tests are adjuncts to COVID-19 diagnosis. The colloidal gold immune chromatography reportedly enables the detection of the Omicron ...