
The PCN film directly peeled off from the glass substrate shows high transparency and flexibility.
Photo by Zepeng Lei.
One day in the not-too-distant future, the plastics in our satellites, cars and electronics may all be living their second, 25th or 250th lives.
New research from CU Boulder, published in Nature Chemistry, details how a class of durable plastics widely used in the aerospace and microelectronics industries can be chemically broken down into their most basic building blocks and then formed once again into the same material.
It’s a major step in the development of repairable and fully recyclable network polymers, a particularly challenging material to recycle, as it is designed to hold its shape and integrity in extreme heat and other harsh conditions. The study documents how this type of plastic can be perpetually broken down and remade, without sacrificing its desired physical properties.
“We are thinking outside the box, about different ways of breaking chemical bonds,” said Wei Zhang, lead author of the study and chair of the chemistry department. “Our chemical methods can help create new technologies and new materials, as well as be utilized to help solve the existing plastic materials crisis.”
Their results also suggest that revisiting the chemical structures of other plastic materials could lead to similar discoveries of how to fully break down and rebuild their chemical bonds, enabling the circular production of more plastic materials in our daily lives.
In the mid-20th century, plastics were ubiquitously adopted in almost every industry and part of life as they are extremely convenient, functional and cheap. But half a century later, after exponential demand and production, plastics pose a major problem to the health of the planet and to people. The production of plastics requires large amounts of oil and the burning of fossil fuels. Disposable plastics create hundreds of millions of tons of waste every year, which ends up in landfills, oceans and even in our bodies, in the form of microplastics.
Recycling, therefore, is key to reducing plastic pollution and fossil fuel emissions this century.
Conventional recycling methods mechanically break down polymers into powders, burn them or use bacterial enzymes to dissolve them. The goal is to end up with smaller pieces that can be used for something else. Think shoes made from recycled rubber tires or clothing made from recycled plastic water bottles. It’s not the same material anymore, but it doesn’t end up in a landfill or the ocean.
But what if you could rebuild a new item from the same material? What if recycling didn’t just offer a second life to plastics, but a repeat experience?
That’s exactly what Zhang and his colleagues have accomplished: They reversed a chemical method and discovered they can both break and form new chemical bonds in a particularly high-performance polymer.
“This chemistry can also be dynamic, can be reversible, and that bond can be reformed,” said Zhang. “We are thinking about a different way to form the same backbone, just from different starting points.”
They do this by breaking the polymer—”poly” meaning “many”—back into singular monomers, its molecules, a concept of reversible or dynamic chemistry. What’s especially novel about this latest method is that it has not only created a new class of polymer material that, like Legos, are easy to build, break apart and rebuild over and over, but the method can be applied to existing, especially hard-to-recycle polymers.
These new chemical methods are also ready for commercialization and can plug and play with current industrial production.
“It can really benefit future design and development of plastics to not only create new polymers, but it’s also very important to know how to convert, upcycle and recycle older polymers,” said Zhang. “By using our new approach, we can prepare many new materials—some of which could have similar properties to the plastics in our daily life.”
This advance in the closed-loop recycling of plastics is inspired by the natural world, as plants, animals and human beings alike are currently part of a planetary-level, circular system of recycling, said Zhang.
“Why can’t we make our materials the same way?”
Original Article: Plastics of the future will live many past lives, thanks to chemical recycling
More from: University of Colorado Boulder | University of Colorado Denver
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Recyclable network polymers
- The Dirty Secret of Alternative Plastics
A proposed ban on single-use plastics is a boon for the bioplastic industry, but are they really good for the environment?
- The t-shirt chewing enzyme ready to tackle plastic waste
LCC helps microbes break down the waxy coating of leaves, and Ms Sulaiman hoped it might also help degrade plastic. One afternoon, she cut up some plastic packaging from a pair of headphones and left ...
- Climate Action 30
Climate Action 30 spotlights global activists, academics, founders, executives, and nonprofit and public sector leaders tackling the climate crisis.
- TotalEnergies accelerates incorporation of recycled plastics into lubricant bottles
Produced at TotalEnergies’ plant in Antwerp and part of the circular polymer range RE:clic, this high-performing rHDPE grade designed for blow moulding applications combines carefully selected ...
- Chemical recycling of plastic not so fantastic, report finds
In today’s industrialized world, avoiding plastic is virtually impossible. Every trip to the grocery store likely means coming home with food and household items packaged in plastic bottles, tubs and ...
Go deeper with Bing News on:
Closed-loop recycling of plastics
- Closed Loop Partners Invests Nearly $15M in Recycling Infrastructure Upgrades Across Several U.S. Municipalities
Alongside innovative companies advancing new recycling solutions ... alongside the Closed Loop Beverage Fund and Closed Loop Circular Plastics Fund, to finance the purchase of new optical sorters to ...
- The Dirty Secret of Alternative Plastics
A proposed ban on single-use plastics is a boon for the bioplastic industry, but are they really good for the environment?
- New catalyst promotes mixed plastics recycling
The oganocatalyst deconstructs mixed plastics at different temperatures, which facilitates recovering their individual monomers separately, in reusable form. Source: Jill Hemman/U.S. Oak Ridge ...
- Scientists are closing the loop on recycling mixed plastics
“Today, almost all plastics are made from fossil fuels using first-use monomers produced in energy-intensive processes. The introduction of this type of closed-loop recycling, if used globally, could ...
- Closed-Loop Recycling of Automotive Mixed Plastic Waste Deemed a Success
When automobiles are at the end of their life, metals, tires, and glass account for 80 to 90% of the materials that can be recycled through traditional mechanical recycling streams ... that is needed ...