
The schematics show two variants of light-activated molecular machines developed at Rice University that drill into and destroy antibiotic-resistant bacteria. The machines could be useful to fight infectious skin diseases.
(Credit: Tour Research Group/Rice University)
The latest iteration of nanoscale drills developed at Rice University are activated by visible light rather than ultraviolet (UV), as in earlier versions. These have also proven effective at killing bacteria through tests on real infections.
Six variants of molecular machines were successfully tested by Rice chemist James Tour and his team. All of them punched holes in the membranes of gram-negative and gram-positive bacteria in as little as two minutes. Resistance was futile for bacteria that have no natural defenses against mechanical invaders. That means they are unlikely to develop resistance, potentially offering a strategy to defeat bacteria that have become immune to standard antibacterial treatments over time.
“I tell students that when they are my age, antibiotic-resistant bacteria are going to make COVID look like a walk in the park,” Tour said. “Antibiotics won’t be able to keep 10 million people a year from dying of bacterial infections. But this really stops them.”
The breakthrough study led by Tour and Rice alumni Ana Santos and appears in Science Advances.
Because extended exposure to UV can be damaging to humans, the Rice lab has been refining its molecules for years. The new version gets its energy from still-blueish light at 405 nanometers, spinning the molecules’ rotors at 2 to 3 million times per second.
It’s been suggested by other researchers that light at that wavelength has mild antibacterial properties of its own, but the addition of molecular machines supercharges it, said Tour, who suggested bacterial infections like those suffered by burn victims and people with gangrene will be early targets.
The machines are based on Nobel Prize-winning work by Bernard Feringa , who developed the first molecule with a rotor in 1999 and got the rotor to spin reliably in one direction. Tour and his team introduced their advanced drills in a 2017 Nature paper .
The Rice lab’s first tests of the new molecules on burn wound infection models confirmed their ability to quickly kill bacteria, including methicillin -resistant Staphylococcus aureus , a common cause of skin and soft tissue infections that was responsible for more than 100,000 deaths in 2019.
The team achieved visible light activation by adding a nitrogen group. “The molecules were further modified with different amines in either the stator (stationary) or the rotor portion of the molecule to promote the association between the protonated amines of the machines and the negatively charged bacterial membrane,” said Liu, now a scientist at Arcus Biosciences in California.
The researchers also found the machines effectively break up biofilms and persister cells , which become dormant to avoid antibacterial drugs.
“Even if an antibiotic kills most of a colony, there are often a few persister cells that for some reason don’t die,” Tour said. “But that doesn’t matter to the drills.”
As with earlier versions, the new machines also promise to revive antibacterial drugs considered ineffective. “Drilling through the microorganisms’ membranes allows otherwise ineffective drugs to enter cells and overcome the bug’s intrinsic or acquired resistance to antibiotics,” said Santos, who’s on the third year of the postdoctoral global fellowship that brought her to Rice for two years and is continuing at the Health Research Institute of the Balearic Islands in Palma, Spain.
The lab is working toward better targeting of bacteria to minimize damage to mammalian cells by linking bacteria-specific peptide tags to the drills to direct them toward pathogens of interest. “But even without that, the peptide can be applied to a site of bacterial concentration, like in a burn wound area,” Santos said.
Original Article: Bacteria-killing drills get an upgrade
More from: Rice University
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Nanoscale drills
- cordless drill motor
There’s a treasure trove of usefulness inside of an electric drill. [Steven Dufresne], Hackaday writer and the mad scientist behind Rimstar.org, kindly documented how to safely and reliably ...
- Converting A Drill Press Into A Milling Machine
What if you could convert your drill press into a mill instead? YouTuber [Small Metalworking Machines] explores this in his video, where he takes a small Central Machinery drill press and adds a ...
- Schools discuss active shooter drills
"Many of them have provided a drill ["Run-Hide-Fight"] on how to survive [active shooter] incidents," Ms Usa said. "Students experienced the [drill] and practised [on what to do]." She said the ...
- 11 Best Nail Drill Machines for Home & Salon
When looking at nail drill machines, there’s an overwhelming array of features and power levels–which is great for suiting your nail drill to your needs but a hassle when you’re trying to ...
- Mavericks' Josh Green: Drills pair of threes
Green posted 12 points (4-8 FG, 2-3 3Pt, 2-2 FT), four rebounds, two assists and two steals over 36 minutes during Wednesday's 127-125 loss to the Warriors. Green turned in a modest showing in a ...
Go deeper with Google Headlines on:
Nanoscale drills
[google_news title=”” keyword=”nanoscale drills” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Molecular machines
- Nature’s Needle: Feng Zhang’s Team Re-engineers Bacterial “Syringes” for Programmable Protein Delivery
Feng Zhang’s lab has unveiled a new tool that could be a game changer for the therapeutic delivery of biomolecules: a bacterial "syringe." ...
- Key mechanism that controls human heart development discovered
Writing in Science Advances researchers of the University of Cologne describe a key mechanism that controls the decision-making process that allows human embryonic stem cells to make the heart. These ...
- Brenda Schulman receives ERC Advanced Grant
Brenda Schulman receives ERC Advanced ... Martinsried. Brenda Schulman, Director of the department Molecular Machines and Signaling at the Max Planck Institute of Biochemistry in Martinsried, will ...
- Land hindered installation of Covid machine - Musenero
A Covid-19 machine that was meant for diagnostics, development and therapeutics was not installed at the height of the pandemic because there was no suitable piece of land to accommodate it, Science ...
- Soaking up sunlight with a microscopic molecular device
“They are the entry point for nearly all the energy that supports life in our biosphere, and they exhibit a diversity of molecular machines used to convert light to chemical energy. The design ...
Go deeper with Google Headlines on:
Molecular machines
[google_news title=”” keyword=”molecular machines” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]