
The cycle of decomposition and recomposition. During normal charge and discharge, the zombie molecule oscillates between its DHAQ2- form (left) and its DHAQ4- form (bottom center). When it decomposes, it turns into DHA2- (right). A voltage pulse resets the decomposed molecules (right) back to their original form (left).
Credit: Yan Jing/Harvard SEAS
New approach topples major barrier to commercialization
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with colleagues at the University of Cambridge, have developed a new method to dramatically extend the lifetime of organic aqueous flow batteries, improving the commercial viability of a technology that has the potential to safely and inexpensively store energy from renewable sources such as wind and solar.
“Organic aqueous redox flow batteries promise to significantly lower the costs of electricity storage from intermittent energy sources, but the instability of the organic molecules has hindered their commercialization,” said Michael Aziz, the Gene and Tracy Sykes Professor of Materials and Energy Technologies at SEAS. “Now, we have a truly practical solution to extend the lifetime of these molecules, which is an enormous step to making these batteries competitive.”
The research is published in Nature Chemistry.
Over the past decade, Aziz and Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science, have collaborated to develop organic aqueous flow batteries using molecules known as anthraquinones, which are composed of naturally abundant elements such as carbon, hydrogen, and oxygen, to store and release energy.
Over the course of their research, the team discovered that these anthraquinones decompose slowly over time, regardless of how many times the battery has been used.
In previous work, the researchers found that they could extend the lifetime of one of these molecules, named DHAQ but dubbed the “zombie quinone” in the lab, by exposing the molecule to air. The team found that if the molecule is exposed to air at just the right part of its charge-discharge cycle, it grabs oxygen from the air and turns back into the original anthraquinone molecule — as if returning from the dead, hence the nickname.
But regularly exposing a battery’s electrolyte to air isn’t exactly practical, as it drives the two sides of the battery out of balance — both sides of the battery can no longer be fully charged at the same time.
To find a more practical approach, the researchers collaborated with chemists at the University of Cambridge in the U.K. to better understand how the molecules decompose and invented an electrical method of reversing the process.
The team found that if they performed a so-called deep discharge, in which the positive and negative terminals of the battery get drained so that the voltage difference between the two becomes zero, and then flipped the polarity of the battery, forcing the positive side negative and the negative side positive, it created a voltage pulse that could reset the decomposing molecules back to their original form.
“Usually, in running other kinds of batteries, you want to avoid draining the battery completely because it tends to degrade its components,” said Yan Jing, a postdoctoral fellow at Harvard and co-first author of the paper. “But we’ve found that this extreme discharge, up to actually reversing the polarity, can recompose these molecules — which was a surprise.”
The process works a bit like a pacemaker, periodically providing a shock to the system that revives decomposed molecules.
In this paper, the researchers demonstrated a net lifetime 17-times longer than previous research. In subsequent research, which refined the process, the researchers demonstrated an even greater increase in lifetime, up to 260-times longer, leading to a loss rate under 10% per year. That research has yet to be published.
“Getting to a single digit percentage of loss per year is really enabling for widespread commercialization because it’s not a major financial burden to top off your tanks by a few percent each year,” said Aziz.
Harvard’s Office of Technology Development has protected the intellectual property associated with this project and has licensed the technology and other related patents on quinone flow batteries to Quino Energy, a startup pursuing its commercial development.
The research team also demonstrated that this approach works for a range of organic molecules and for a range of deep discharge processes, both with and without polarity reversal. Next, the team aims to explore how much further they can extend the lifetime of DHAQ and other inexpensive anthraquinones that have been used in these systems.
“Flow batteries can be expected to be the next wave in storage technology beyond Lithium – particularly batteries with organic electrolytes,” said Imre Gyuk, Director of the Department of Energy’s Office of Electricity Storage program. “This work allows control of the decomposition process, thus greatly extending the lifetime and enabling applications for medium- and long-duration energy storage.”
Original Article: Research extends the lifetime of molecules in organic flow batteries to practical values
More from: Harvard John A. Paulson School of Engineering and Applied Sciences | University of Cambridge
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Organic aqueous flow batteries
- Equity needed: Boosting R&D investment for America’s proven battery industry
To achieve energy independence, we will need batteries of all types: lead, lithium, flow, and chemistries yet to be discovered. The demand for batteries will outstrip domestic production for decades.
- 2031, Redox Flow Battery Market Research Report | Booming Worldwide
The "Redox Flow Battery Market" is one of the sectors that is expanding the fastest, thus it is crucial for players in the market to first do an exhaustive analysis of the sector. The Redox Flow ...
- What Are Strong Acids and Why Are Are They Named That
In chemistry, some substances wield extraordinary power when it comes to ionizing in aqueous solutions, and they go by the name “strong acids.” These chemical compounds possess a unique ability to ...
- Guide to Solar Batteries: Are They Worth It? (October 2023)
Some common chemistries used by solar batteries are lead-acid, lithium-ion, nickel-cadmium and redox flow. When comparing solar batteries, you should consider both the rated power output ...
- Batteries News
Researchers Offer Insights Into Solid-Electrolyte Interphases in Next-Gen Aqueous Potassium-Ion Batteries Sep. 19, 2023 — Aqueous potassium-ion batteries are a promising alternative to lithium ...
Go deeper with Google Headlines on:
Organic aqueous flow batteries
[google_news title=”” keyword=”organic aqueous flow batteries” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Flow batteries
- What are silicon anode batteries?
In this post, we discuss what silicon anode batteries are, how they compare to traditional graphite anode batteries, and their pros and cons.
- IDTechEx Asks, Will Redox Flow Batteries be a Widely Deployed Energy Storage Technology
Over the last decade, redox flow battery (RFB) deployments have been sporadic and few compared to ever-growing Li-ion battery deployments for stationary energy storage applications. However, as the ...
- US industrial giant backs iron flow batteries in long duration storage push
US industrial giant invests $US27.5 million in a strategic collaboration to advance the development and market adoption of iron flow battery systems.
- CleanCo eyes flow batteries in search of 4 hour-plus storage for Swanbank energy hub
CleanCo hasn’t yet been able to find the right technology fit for the Swanbank clean energy hub, so is asking industry to provide some ideas.
- Honeywell invests $27.5M into Oregon battery company ESS
ESS announced the commissioning of six of its battery systems at a Sacramento Municipal Utility District site. The company will provide ...
Go deeper with Google Headlines on:
Flow batteries
[google_news title=”” keyword=”flow batteries” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]