Researchers first to demonstrate use of metal-organic frameworks to degrade plastics
What if the life cycle of the plastic bottle was circular? Where a used plastic bottle was returned to its original components, ready to be made into a new plastic bottle instead of possibly ending up in a landfill.
A Northwestern University research team is the first to demonstrate that a material called a metal-organic framework (MOF) is a stable and selective catalyst for breaking down polyester-based plastic into its component parts.
Only three things are needed: plastic, hydrogen and the catalyst. An important bonus is that one of the component parts the plastic is broken down into is terephthalic acid, a chemical used to produce plastic. With the Northwestern method, it isn’t necessary to go all the way back to oil and the expensive and energy-intensive production and separation of xylenes.
“We can do a lot better than starting from scratch when making plastic bottles,” said Omar Farha, a professor of chemistry in the Weinberg College of Arts and Sciences. He is the corresponding author of the study. “Our process is much cleaner.”
The work was published recently in the journal Angewandte Chemie.
The researchers chose a zirconium-basedMOF called UiO-66 because it is easy to make, scalable and inexpensive. Yufang Wu, the study’s first author and a visiting graduate student in Farha’s group, used the plastic that was most handy: the plastic water bottles her colleagues in the lab had discarded. She chopped them up, heated the plastic and applied the catalyst.
“The MOF performed even better than we anticipated,” Farha said. “We found the catalyst to be very selective and robust. Neither the color of the plastic bottle or the different plastic the bottle caps were made from affected the efficiency of the catalyst. And the method doesn’t require organic solvents, which is a plus.”
What are MOFs?
A class of nano-sized materials, MOFs have been widely investigated because of their highly ordered structures. Farha has studied MOFs for more than a decade and previously showed they can be used to destroy toxic nerve agents. In the current study, Farha said, MOFs act in much the same way — breaking an ester bond to degrade polyethylene terephthalate (PET). This plastic is one of the most popular consumer plastics worldwide.
“We’ve been using zirconium MOFs to degrade nerve agents for years,” Farha said. “The team then wondered if these MOFs could also degrade plastic even though the reactions and mechanism are different. That curiosity led to our recent findings.”
“This research helps to address long-standing challenges associated with plastic waste and opens up new areas and applications for MOFs,” Farha said.
Envision Tinkertoys
MOFs are made of organic molecules and metal ions or clusters which self-assemble to form multidimensional, highly crystalline, porous frameworks. To picture the structure of a MOF, Farha said, envision a set of Tinkertoys in which the metal ions or clusters are the circular or square nodes and the organic molecules are the rods holding the nodes together.
In addition to being easy to make, scalable and inexpensive, another advantage of UiO-66 is that the MOF’s organic linker, terephthalic acid (TA), is what you get when breaking down plastic.
Structural characterization studies revealed that during the degradation process, UiO-66 undergoes an interesting transformation into another zirconium-based MOF called MIL-140A. This MOF also showed great catalytic activity toward PET degradation.
Original Article: Method efficiently breaks down plastic bottles into component parts
More from: Northwestern University
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
UiO-66
- Illinois State Museum director gets call from Route 66 centennial commission
Cinnamon Catlin-Legutko, the director of the Illinois State Museum in Springfield, has been appointed by President Joe Biden to the Route 66 Centennial Commission. William "Bill" Thomas of Atlanta ...
- 66 Blackberry Drive Ashby WA 6065
Explore all key property features for 66 Blackberry Drive, Ashby. Click here to find out more. What is the size of the property at 66 Blackberry Drive, Ashby? The internal land size for 66 ...
- IISc. researchers have nano solution for wastewater treatment
They developed a metal organic framework (MoF) nanocomposite by intercalating the properties of graphene oxide and UiO-66-NDC ...
- Phillips 66 to sell Louisiana crude oil terminal to Hilcorp affiliate Harvest Midstream
Phillips 66 (NYSE: PSX) is selling a crude oil terminal in Louisiana, which used to be a refinery, to a fellow Houston-based company. Harvest Midstream, an affiliate of Houston-based oil and gas ...
- Army 66, CCSU 55
Totals 23-46 12-18 66. Momoh 2-4 0-0 4, Amos 6-13 3-3 18, Rodgers 6-13 0-0 14, Scantlebury 3-10 3-3 10, Snoddy 2-8 0-0 4, Sweatman 0-8 0-0 0, Breland 1-2 0-0 2, Brown 0-2 0-0 0, Holloway 0-1 0-0 0 ...
Go deeper with Google Headlines on:
UiO-66
[google_news title=”” keyword=”UiO-66″ num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Degrading plastics
- Unpacking the packaging potential of mycelium, the mushroom ‘roots’ of many uses
Some 380 million metric tons of plastic are added to the world every year. What if some of that was replaced by materials made from fungus?
- Q&A: Ryan Fellow, NU student Matthew Coile discusses recyclable plastic research
Fourth-year chemical engineering Ph.D. student Matthew Coile received the Ryan Fellowship in 2019 for his work in chemical and biological engineering. The fellowship supports graduate students ...
- DRC: Kinshasa drowns under a sea of plastic waste
Since the beginning of the rainy season, plastic waste has been piling up in the Congolese capital, causing severe flooding and land subsidence.
- New plastics made from plants developed in San Diego
Bioengineering leads to products that perform like plastic but aren’t made from petroleum, and some are biodegrade.
- Researchers develop new biodegradable plastic with thermoplastic properties similar to polyethylene
Polyethylene has a number of advantageous properties, but biodegradability is not one of them. A team of researchers has now developed a plastic which has similar thermoplastic properties to ...
Go deeper with Google Headlines on:
Degrading plastics
[google_news title=”” keyword=”degrading plastics” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]