
A normal African clawed frog. “It’s exciting to see that the drugs we selected were helping to create an almost complete limb,” said Nirosha Murugan.
Photo: Pouzin Olivier, via Creative Commons
Frogs briefly treated with a five-drug cocktail administered by a wearable bioreactor were able to regrow a functional, nearly complete limb
For millions of patients who have lost limbs for reasons ranging from diabetes to trauma, the possibility of regaining function through natural regeneration remains out of reach. Regrowth of legs and arms is the province of salamanders and superheroes.
But in a study published in the journal Science Advances, scientists at Tufts and Harvard University’s Wyss Institute have brought us a step closer to the goal of regenerative medicine.
On adult frogs, which are naturally unable to regenerate limbs, the researchers were able to trigger regrowth of a lost leg using a five-drug cocktail applied in a silicone wearable bioreactor dome that seals in the elixir over the stump for just 24 hours. That brief treatment sets in motion an 18-month period of regrowth that restores a functional leg.
Many creatures have the capability of full regeneration of at least some limbs, including salamanders, starfish, crabs, and lizards. Flatworms can even be cut up into pieces, with each piece reconstructing an entire organism. Humans are capable of closing wounds with new tissue growth, and our livers have a remarkable, almost flatworm-like capability of regenerating to full size after a 50% loss.
But loss of a large and structurally complex limb—an arm or leg—cannot be restored by any natural process of regeneration in humans or mammals. In fact, we tend to cover major injuries with an amorphous mass of scar tissue, protecting it from further blood loss and infection and preventing further growth.
Kickstarting Regeneration
The Tufts researchers triggered the regenerative process in African clawed frogs by enclosing the wound in a silicone cap, which they call a BioDome, containing a silk protein gel loaded with the five-drug cocktail.
Each drug fulfilled a different purpose, including tamping down inflammation, inhibiting the production of collagen which would lead to scarring, and encouraging the new growth of nerve fibers, blood vessels, and muscle. The combination and the bioreactor provided a local environment and signals that tipped the scales away from the natural tendency to close off the stump, and toward the regenerative process.
The researchers observed dramatic growth of tissue in many of the treated frogs, re-creating an almost fully functional leg. The new limbs had bone structure extended with features similar to a natural limb’s bone structure, a richer complement of internal tissues, including neurons, and several “toes” grew from the end of the limb, although without the support of underlying bone.
The regrown limb moved and responded to stimuli such as a touch from a stiff fiber, and the frogs were able to make use of it for swimming through water, moving much like a normal frog would.
“It’s exciting to see that the drugs we selected were helping to create an almost complete limb,” said Nirosha Murugan, research affiliate at the Allen Discovery Center at Tufts and first author of the paper. “The fact that it required only a brief exposure to the drugs to set in motion a months-long regeneration process suggests that frogs and perhaps other animals may have dormant regenerative capabilities that can be triggered into action.”
The researchers explored the mechanisms by which the brief intervention could lead to long-term growth. Within the first few days after treatment, they detected the activation of known molecular pathways that are normally used in a developing embryo to help the body take shape.
Activation of these pathways could allow the burden of growth and organization of tissue to be handled by the limb itself, similar to how it occurs in an embryo, rather than require ongoing therapeutic intervention over the many months it takes to grow the limb.
How the BioDome Works
Animals naturally capable of regeneration live mostly in an aquatic environment. The first stage of growth after loss of a limb is the formation of a mass of stem cells at the end of the stump called a blastema, which is used to gradually reconstruct the lost body part.
The wound is rapidly covered by skin cells within the first 24 hours after the injury, protecting the reconstructing tissue underneath.
“Mammals and other regenerating animals will usually have their injuries exposed to air or making contact with the ground, and they can take days to weeks to close up with scar tissue,” said David Kaplan, Stern Family Professor of Engineering at Tufts and co-author of the study. “Using the BioDome cap in the first 24 hours helps mimic an amniotic-like environment which, along with the right drugs, allows the rebuilding process to proceed without the interference of scar tissue.”
Next Steps in Frogs and Mammals
Previous work by the Tufts team showed a significant degree of limb growth triggered by a single drug, progesterone, with the BioDome. However, the resulting limb grew as a spike and was far from the more normally shaped, functional limb achieved in the current study.
The five-drug cocktail represents a significant milestone toward the restoration of fully functional frog limbs and suggests further exploration of drug and growth factor combinations could lead to regrown limbs that are even more functionally complete, with normal digits, webbing, and more detailed skeletal and muscular features.
“We’ll be testing how this treatment could apply to mammals next,” said corresponding author Michael Levin, Vannevar Bush Professor of Biology in the School of Arts and Sciences, director of the Allen Discovery Center at Tufts, and associate faculty member of the Wyss Institute.
“Covering the open wound with a liquid environment under the BioDome, with the right drug cocktail, could provide the necessary first signals to set the regenerative process in motion,” he said. “It’s a strategy focused on triggering dormant, inherent anatomical patterning programs, not micromanaging complex growth, since adult animals still have the information needed to make their body structures.”
Original Article: Scientists Regrow Frog’s Lost Leg
More from: Tufts University | Wyss Institute for Biologically Inspired Engineering
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Limb regeneration
- The tiny worm at the heart of regeneration science
A tiny worm that regenerates entire organs. A South American snail that can regrow its eyes. A killifish that suspends animation in dry weather and reanimates in water. These are the organisms at the ...
- Most Disgusting Superpowers In DC Comics, Ranked
It turns out superpowers aren't always pretty. In the world of DC comics, these powers can be downright revolting.
- Artificial Limb Transitions Between Prosthetics and Bionics
Although prosthetic limbs have been around for thousands of years and have undergone myriad transformations and refinements, modern-day prosthetics still have a variety of notable drawbacks.
- Phantom limb pain after amputation is challenge to treat
I don’t remember a thing about the accident.” Besides getting used to losing his leg, Milavec has had to learn to live with phantom limb pain — pain appearing to come from where the amputate ...
- New study on sea star relatives provides insight into factors that impact longterm evolution
A recently published study in Geology presents a new outlook on how relatives of sea stars change over millions of years and the factors that influence the rate of those ...
Go deeper with Google Headlines on:
Limb regeneration
[google_news title=”” keyword=”limb regeneration” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Regrowing limbs
- The tiny worm at the heart of regeneration science
A tiny worm that regenerates entire organs. A South American snail that can regrow its eyes. A killifish that suspends animation in dry weather and reanimates in water. These are the organisms at the ...
- Regrowing A Blackberry From The Keyboard Out
Here at Hackaday we’re big fans of device-reuse, and what [arturo182] has done with the Blackberry Q10’s keyboard is a fantastic example. Sometimes you’re working on a portable device and ...
- Artificial Limb Transitions Between Prosthetics and Bionics
Although prosthetic limbs have been around for thousands of years and have undergone myriad transformations and refinements, modern-day prosthetics still have a variety of notable drawbacks.
- Phantom limb pain after amputation is challenge to treat
I don’t remember a thing about the accident.” Besides getting used to losing his leg, Milavec has had to learn to live with phantom limb pain — pain appearing to come from where the amputate ...
- Heartbreaking image of Calif. mom who had her limbs amputated after eating bad tilapia emerges as GoFundMe campaign raises over $110K
Over $110,000 has been raised for the California mom who had to have all her limbs amputated after eating bad tilapia, as a harrowing image of her in her hospital bed has emerged. Laura Barajas ...
Go deeper with Google Headlines on:
Regrowing limbs
[google_news title=”” keyword=”regrowing limbs” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]