
via Stanford Medicine
Stanford Medicine researchers created an algorithm to notify smartwatch wearers of stress, capturing events such as air travel, extended exercise and illness.
Using data from smartwatches, a new algorithm reads heart rate as a proxy for physiological or mental stress, potentially alerting wearers they’re falling ill before they have symptoms.
Researchers led by Michael Snyder, PhD, professor and chair of genetics, have enrolled thousands of participants in a study that employs the algorithm to look for extended periods during which heart rate is higher than normal — a telltale sign that something may be amiss.
But figuring out what may be wrong takes a little sleuthing. During the study, many stressors triggered an alert. Some folks received them while traveling; some while running a marathon; others after over-indulging at the bar.
The most exciting finding, Snyder said, was that the algorithm was able to detect 80% of confirmed COVID-19 cases before or when participants were symptomatic.
“The idea is for people to eventually use this information to decide whether they need to get a COVID-19 test or self-isolate,” Snyder said. “We’re not there yet — we still need to test this in clinical trials — but that’s the ultimate goal.”
The algorithm can’t differentiate between someone who’s knocked back a few too many, someone’s who’s stressed because of work and someone who’s ill with a virus. Although it pinged users who had COVID-19, more refining is needed before people can depend on their smartwatches to warn them of an impending infection with SARS-CoV-2 or other viruses.
A paper detailing the study was published online in Nature Medicine Nov. 29. Snyder, the Stanford W. Ascherman, MD, FACS, Professor of Genetics, and Amir Bahmani, PhD, lecturer and director of Stanford’s Deep Data Research Computing Center, are co-senior authors. Arash Alavi, PhD, research and development lead in Stanford’s Deep Data Research Computing Center; research scientist Meng Wang, PhD; and postdoctoral scholars Gireesh Bogu, PhD, Ekanath Srihari Rangan, MBBS, and Andrew Brooks, PhD, share lead authorship. The alert system was built using MyPHD, a scalable, secure platform for health data.
Stress detection
During the study, which ran for about eight months in 2020 and 2021, 2,155 participants donned a smartwatch, which tracked mental and physical “stress events” via heart rate. When notified of a stress event, through an alert paired with an app on their phone, participants recorded what they were doing. To trigger an alert, their heart rate needed to be elevated for more than a few hours, so a quick jog around the block or a sudden loud noise didn’t set it off.
“What’s great about this is people can contextualize their alerts,” Snyder said. “If you’re traveling via airline and you receive an alert, you know that air travel is likely the culprit.”
If, however, you’re sitting on the couch with a cup of chamomile tea and you receive an alert, that may be a sign that something else — an infection, perhaps — is brewing. Snyder hopes wearers will be able to discern when an alert means they should consider getting tested.
Of 84 people who were diagnosed with COVID-19 during the study, the algorithm flagged 67. Most alerts fell into other categories, such as travel, eating a large meal, menstruation, mental stress, intoxication or non-COVID-19 infections. The algorithm also flagged a period of stress after many participants received a COVID-19 vaccine, reflecting the uptick in immune response prompted by the shot.
Refining the algorithm
As Snyder and the team recruit more participants into the study, they’re planning to hone the specificity of the alerts by adding data — including step count, sleep patterns and body temperature — in the hope that data patterns can correspond to and flag distinct stress events. In addition, the researchers plan to run a clinical trial to determine if the alerts can reliably detect a COVID-19 infection and be used to guide medical choices.
Original Article: Smartwatches alert wearers to bodily stress, including COVID-19
More from: Stanford University | Stanford University School of Medicine | Case Western Reserve University
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Smartwatch algorithm
- New prescription smartwatch accurately detects atrial fibrillation
As the use of wearable technology grows, smart watches are marketed across the globe to consumers as a way to monitor health.
- Smart Watch Helps Detect Irregular Heart Rhythm
To address the clinical gap, a research team led by Ghanbari developed a prescription wristwatch that continuously monitors the wearer's heart rhythm and uses a unique algorithm to detect atrial ...
- Best smartwatch 2023: Top picks for every budget
You can refer to our smartwatch buying guide for more tips on finding the ultimate wearable for you. And be sure to look at the best cheap smartwatches if you're on a mission to save some dollars.
- Empatica aims to develop seizure-forecasting algorithm based on wearable data
The company plans a study using its wrist-worn device to capture real-world data that could help understand and predict seizures for people with epilepsy.
- Weekly deals roundup: Save big on a new Motorola ThinkPhone, Galaxy Watch 5, Surface Pro 8 and more
However, be sure to act fast and snatch a new smartphone, smartwatch, tablet, or a pair of great-sounding headphones for less through this deal since you never know how long the offers will stay ...
Go deeper with Google Headlines on:
Smartwatch algorithm
[google_news title=”” keyword=”smartwatch algorithm” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Stress detecting algorithm
- Inside the Saudi Arabia-developed fingerprint test to detect cellular stress
Elevated stress levels stand out as a widely recognized catalyst for aging and age-related diseases. However, a cutting-edge fingerprint prick test ...
- Empatica plots wearable-based study to develop seizure prediction algorithm
After developing a wearable device that can automatically detect seizures in people with epilepsy and ... The Embrace wrist-worn device currently uses an artificial intelligence algorithm to spot the ...
- Digital camera and AI algorithm can now detect facial palsy
They then took photos of 20 patients with different degrees of facial palsy, using an algorithm to detect the condition in real time, as well as identifying their approximate age and gender.
- What is the process for detecting anomalies using probabilistic algorithms?
Some of the common algorithms for anomaly detection are Bayesian networks, which are graphical models representing conditional dependencies and independencies among variables; Hidden Markov models ...
- What is the role of stress testing in algorithm validation?
Stress testing can help you validate your algorithm by checking if it meets the desired specifications and requirements. For example, you might want to test if your algorithm can handle large ...
Go deeper with Google Headlines on:
Stress detecting algorithm
[google_news title=”” keyword=”stress detecting algorithm” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]