
via Nanyang Technological University
NTU Singapore scientists invent ‘smart’ window material that blocks rays without blocking views An international research team led by scientists from Nanyang Technological University, Singapore (NTU Singapore) has invented a ‘smart’ window material that controls heat transmission without blocking views, which could help cut the energy required to cool and heat buildings.
Developed by NTU researchers, the new energy-saving material for electrochromic (EC) windows that operates at the flick of a switch is designed to block infrared radiation – which is the major component of sunlight that emits heat.
The new material has a specifically designed nanostructure and comprises advanced materials like titanium dioxide (TiO2), tungsten trioxide (WO3), neodymium-Niobium (Nd-Nb), and tin (IV) oxide (SnO2). The composite material is intended to be coated onto glass window panels, and when activated by electricity, users would be able to ‘switch on and off’ the infrared radiation transmission through the window.
The invention, which featured alongside the front cover of the journal ACS Omega, could block up to 70 per cent of infrared radiation according to experimental simulations without compromising views through the window since it allows up to 90 per cent of visible light to pass through.
The material is also about 30 per cent more effective in regulating heat than commercially available electrochromic windows and is cheaper to make due to its durability.
An improvement over current electrochromic (EC) window Electrochromic windows are a common feature in ‘green’ buildings today. They work by becoming tinted when in use, reducing light from entering the room.

Commercially available electrochromic windows usually have a layer of tungsten trioxide (WO3) coated on one side of the glass panel, and the other, without. When the window is switched on, an electric current moves lithium ions to the side containing WO3, and the window darkens or turns opaque. Once switched off, the ions migrate away from the coated glass, and the window becomes clear again.
However, current electrochromic windows are only effective in blocking visible light, not the infrared radiation, which means heat continues to pass through the window, warming up the room.
Another drawback of the current technology is its durability, as the performance of the electrochromic component tends to degrade in three to five years. In lab tests, NTU’s electrochromic technology was put through rigorous on-off cycles to evaluate its durability Results showed the properties of the window retained excellent stability (blocked more than 65% of infrared radiation) demonstrating its superior performance, feasibility and costs saving potential for long-term use in sustainable buildings.
Lead author of the electrochromic window study, Associate Professor Alfred Tok of the NTU School of Materials Science and Engineering said, “By incorporating the specially designed nanostructure, we enabled the material to react in a ‘selective’ manner, blocking near infrared radiation while still allowing most of the visible light to pass through whenever our electrochromic window is switched on. The choice of advanced materials also helped improved the performance, stability and durability of the smart window.”
The new electrochromic technology may help conserve energy that would be used for the heating and cooling of buildings and could contribute to the future design of sustainable green buildings, say the research team.
The study reflects the university’s commitment to address humanity’s grand challenges on sustainability as part of the NTU 2025 strategic plan, which seeks to accelerate the translation of research discoveries into innovations that mitigate human impact on the environment.
Next generation smart window: Controlling both infrared radiations and conduction heat Seeking to improve the performance of their smart window technology, the NTU team, in a separate work to that reported in the journal, created a switch system that helps to control conducted heat, which is the heat from the external environment.
The patented NTU switch comprises magnetic carbon-based particles and thin films that are good conductors of heat. When the switch is turned off, conducted heat cannot transfer through the window. When switched on, the heat will be allowed to pass through the glass window.
When integrated with the newly developed electrochromic material, the team’s smart window can control two types of heat transmission: infrared radiation and conduction heat, which is the main mode of heat transfer through matter.
First author of the study, Dr Ronn Goei, Senior Research Fellow at the NTU School of Materials Science and Engineering said, “By integrating both the new electrochromic material we invented and the patented switch in a window, we can create a smart window with unique capabilities. With the ability to control both infrared radiated heat from the sun and conducted heat passing through the window, we expect this technology to be particularly useful in temperate climates, as building occupants can use it to regulate heat loss or gain according to the needs of the changing seasons, while still enjoying much of the view.”
Co-author Professor Shlomo Magdassi from the Institute of Chemistry at the Hebrew University of Jerusalem, said, “The research outcome is expected to enable fabrication of unique windows that will result in energy savings. This is an excellent example of scientific collaboration between the researchers at NTU and The Hebrew University of Jerusalem, Israel, enabled by the CREATE programme of Singapore’s National Research Foundation.”
Exploring commercial potential
Moving forward, the research team hopes to take the invention from lab to market. It has partnered with glass manufacturer iGlass Asia Pacific for further tests, and to look at potentially incorporating the smart window into its projects for improved efficiency and sustainability.
Original Article: ‘Smart’ window blocks rays without blocking views
More from: Nanyang Technological University | Hebrew University of Jerusalem
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Smart window material
- Hilipert Intelligent Reading Glasses Reviews - Must Read Before You Buy!
The good news is you no longer have to face this battle. A revolutionary invention called the Hilipert Intelligent Reading Glasses is now available. These eyeglasses are different from other ...
- Window Coverings Market is Expected to be Valued at US$ 35 Billion by 2033 | FMI
The window coverings market size is estimated to be valued at US$ 23 billion in 2023 and is expected to be valued at US$ 35 billion by 2033. The adoption of window coverings is likely to advance at a ...
- High-tech automation systems making smart homes even smarter
Smart products seem to surround tech-savvy consumers these days. It isn’t a new concept since smartphones, TVs, watches and cars have been around for decades.
- The Shade Store’s automated window treatments empower any project
From battery-powered to smart-paneled, The Shade Store has a motorization option that’s right for your windows. Four designers reveal their favorite styles.
- Perovskite solar glass put to test at model smart home
Panasonic unveils its solar glass product that integrates perovskite cells with glass windows and puts it to the test on a smart home in Japan.
Go deeper with Google Headlines on:
Smart window material
[google_news title=”” keyword=”smart window material” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Electrochromic windows
- Properties of electrochromic windows enhanced with water
Water bound within the crystalline structure of a tungsten oxide could lead to electrochromic windows with enhanced properties, claim researchers at NC State.
- Electric Cars That Are Inspiring The Return Of Retro Design Cues
Automakers are going bonkers with the styling of EVs, but here are some EVs that carry a retro design and are bound to age gracefully.
- A brightly (multi)colored future for electrochromic devices shines ahead
Vivid displays, enriched color variations and boosted stability are something everyone can look forward to encountering as advances are made in the electrochromic device (ECD) field ...
- A brightly (multi)colored future for electrochromic devices shines ahead
This can improve the appearance and performance of emerging electrochromic devices such as e-paper, smart windows, and electronic displays, and might reduce waste later down the line when ECDs ...
- Electrochromic Glass Leads the Way as Smart Glass Revolutionizes Energy Efficiency and Comfort
The "Smart Glass Market Size, Share & Trends Analysis Report By Technology (PDLC, SPD, Electrochromic), By Application (Transportation, Power Generation, Architectural), By Region, And Segment ...
Go deeper with Google Headlines on:
Electrochromic windows
[google_news title=”” keyword=”electrochromic windows” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]