
An illustration by study coauthor Stephanie Gamez depicts flightless females and sterile male mosquitoes, features of the new precision-guided sterile insect technique, or pgSIT, which is designed to control disease-spreading Aedes aegypti mosquitoes.
CRISPR-based system developed to safely restrain mosquito vectors via sterilization
Leveraging advancements in CRISPR-based genetic engineering, researchers at the University of California San Diego have created a new system that restrains populations of mosquitoes that infect millions each year with debilitating diseases.
The new precision-guided sterile insect technique, or pgSIT, alters genes linked to male fertility—creating sterile offspring—and female flight in Aedes aegypti, the mosquito species responsible for spreading wide-ranging diseases including dengue fever, chikungunya and Zika.
“pgSIT is a new scalable genetic control system that uses a CRISPR-based approach to engineer deployable mosquitoes that can suppress populations,” said UC San Diego Biological Sciences Professor Omar Akbari. “Males don’t transmit diseases so the idea is that as you release more and more sterile males, you can suppress the population without relying on harmful chemicals and insecticides.”
Details of the new pgSIT are described September 10, 2021, in the journal Nature Communications.
pgSIT differs from “gene drive” systems that could suppress disease vectors by passing desired genetic alterations indefinitely from one generation to the next. Instead, pgSIT uses CRISPR to sterilize male mosquitoes and render female mosquitoes, which spread disease, as flightless. The system is self-limiting and is not predicted to persist or spread in the environment, two important safety features that should enable acceptance for this technology.
Akbari says the envisioned pgSIT system could be implemented by deploying eggs of sterile males and flightless females at target locations where mosquito-borne disease spread is occurring.
“Supported by mathematical models, we empirically demonstrate that released pgSIT males can compete, and suppress and even eliminate mosquito populations,” the researchers note in the Nature Communications paper. “This platform technology could be used in the field, and adapted to many vectors, for controlling wild populations to curtail disease in a safe, confinable and reversible manner.”
Although molecular genetic engineering tools are new, farmers have been sterilizing male insects to protect their crops since at least the 1930s. United States growers in the 1950s began using radiation to sterilize pest species such as the New World Screwworm fly, which is known to destroy livestock. Similar radiation-based methods continue today, along with the use of insecticides. pgSIT is designed as a much more precise and scalable technology since it uses CRISPR—not radiation or chemicals—to alter key mosquito genes. The system is based on a method that was announced by UC San Diego in 2019 by Akbari and his colleagues in the fruit fly Drosophila.
As envisioned, Akbari says pgSIT eggs can be shipped to a location threatened by mosquito-borne disease or developed at an on-site facility that could produce the eggs for nearby deployment. Once the pgSIT eggs are released in the wild, typically at a peak rate of 100-200 pgSIT eggs per Aedes aegypti adult, sterile pgSIT males will emerge and eventually mate with females, driving down the wild population as needed.
Beyond Aedes aegypti, the researchers believe the pgSIT technology could be directed to other species that spread disease.
“… This study suggests pgSIT may be an efficient technology for mosquito population control and the first example of one suited for real-world release,” the researchers say. “Going forward, pgSIT may provide an efficient, safe, scalable, and environmentally friendly alternative next-generation technology for wild population control of mosquitoes resulting in wide-scale prevention of human disease transmission.”
Original Article: New Technology Designed to Genetically Control Disease-spreading Mosquitoes
More from: University of California San Diego
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Sterile insect technique
- The Right Chemistry: How screwflies were made infertile without affecting their love lifeon June 9, 2023 at 8:00 am
In the southern U.S., screwworms were literally screwing cattle and figuratively doing the same to ranchers who were annually losing the equivalent of $1.8 billion in today’s dollars. The somewhat ...
- The Man Who Turned the World on to the Genius of Fungion June 8, 2023 at 8:46 am
Entangled Life” has turned Sheldrake, who is 36, into a kind of human ambassador for the fungal kingdom: the face of fungi. He has flown to the Tarkine rainforest in Tasmania to shoot an IMAX movie, ...
- Insect evolution patterns confirmed using new imaging techniqueon June 5, 2023 at 8:51 am
The new method for studying insect evolution uses a technique known as X-ray microtomography. It is a 3D imaging technique that allows researchers to see the structure of an insects wing ...
- How Bacterial Communities Divvy up Dutieson June 1, 2023 at 4:00 pm
Biofilms are home to millions of microbes, but disrupting their interactions could produce more effective antibiotics.
- Combating Mosquito-Borne Diseases with CRISPRon May 31, 2023 at 9:16 pm
What do you see as the most promising technology for insect control? The sterile insect technique is the most effective way of controlling insects in the wild, but it traditionally uses radiation for ...
Go deeper with Google Headlines on:
Sterile insect technique
[google_news title=”” keyword=”sterile insect technique” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
pgSIT
- Combating Mosquito-Borne Diseases with CRISPRon May 31, 2023 at 9:16 pm
We developed a precision-guided sterile insect technique (pgSIT), which also uses CRISPR. This could be one way of combating mosquitoes that does not rely on insecticides. By using CRISPR, we are not ...
Go deeper with Google Headlines on:
pgSIT
[google_news title=”” keyword=”pgSIT” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]