THE NEW AI SYSTEM TAKES ITS INSPIRATION FROM HUMANS: WHEN A HUMAN SEES A COLOR FROM ONE OBJECT, WE CAN EASILY APPLY IT TO ANY OTHER OBJECT BY SUBSTITUTING THE ORIGINAL COLOR WITH THE NEW ONE.
ILLUSTRATION/CHRIS KIM.
Imagine an orange cat. Now, imagine the same cat, but with coal-black fur. Now, imagine the cat strutting along the Great Wall of China. Doing this, a quick series of neuron activations in your brain will come up with variations of the picture presented, based on your previous knowledge of the world.
In other words, as humans, it’s easy to envision an object with different attributes. But, despite advances in deep neural networks that match or surpass human performance in certain tasks, computers still struggle with the very human skill of “imagination.”
Now, a USC research team comprising computer science Professor Laurent Itti, and PhD students Yunhao Ge, Sami Abu-El-Haija and Gan Xin, has developed an AI that uses human-like capabilities to imagine a never-before-seen object with different attributes. The paper, titled Zero-Shot Synthesis with Group-Supervised Learning, was published in the 2021 International Conference on Learning Representations on May 7.
“We were inspired by human visual generalization capabilities to try to simulate human imagination in machines,” said Ge, the study’s lead author.
“Humans can separate their learned knowledge by attributes—for instance, shape, pose, position, color—and then recombine them to imagine a new object. Our paper attempts to simulate this process using neural networks.”
“This new disentanglement approach, for the first time, truly unleashes a new sense of imagination in A.I. systems, bringing them closer to humans’ understanding of the world.”
Laurent Itti.
AI’s generalization problem
For instance, say you want to create an AI system that generates images of cars. Ideally, you would provide the algorithm with a few images of a car, and it would be able to generate many types of cars—from Porsches to Pontiacs to pick-up trucks—in any color, from multiple angles.
This is one of the long-sought goals of AI: creating models that can extrapolate. This means that, given a few examples, the model should be able to extract the underlying rules and apply them to a vast range of novel examples it hasn’t seen before. But machines are most commonly trained on sample features, pixels for instance, without taking into account the object’s attributes.
The science of imagination
In this new study, the researchers attempt to overcome this limitation using a concept called disentanglement. Disentanglement can be used to generate deepfakes, for instance, by disentangling human face movements and identity. By doing this, said Ge, “people can synthesize new images and videos that substitute the original person’s identity with another person, but keep the original movement.”
Similarly, the new approach takes a group of sample images—rather than one sample at a time as traditional algorithms have done—and mines the similarity between them to achieve something called “controllable disentangled representation learning.”
Then, it recombines this knowledge to achieve “controllable novel image synthesis,” or what you might call imagination. “For instance, take the Transformer movie as an example” said Ge, “It can take the shape of Megatron car, the color and pose of a yellow Bumblebee car, and the background of New York’s Times Square. The result will be a Bumblebee-colored Megatron car driving in Times Square, even if this sample was not witnessed during the training session.”
This is similar to how we as humans extrapolate: when a human sees a color from one object, we can easily apply it to any other object by substituting the original color with the new one. Using their technique, the group generated a new dataset containing 1.56 million images that could help future research in the field.
Understanding the world
While disentanglement is not a new idea, the researchers say their framework can be compatible with nearly any type of data or knowledge. This widens the opportunity for applications. For instance, disentangling race and gender-related knowledge to make fairer AI by removing sensitive attributes from the equation altogether.
In the field of medicine, it could help doctors and biologists discover more useful drugs by disentangling the medicine function from other properties, and then recombining them to synthesize new medicine. Imbuing machines with imagination could also help create safer AI by, for instance, allowing autonomous vehicles to imagine and avoid dangerous scenarios previously unseen during training.
“Deep learning has already demonstrated unsurpassed performance and promise in many domains, but all too often this has happened through shallow mimicry, and without a deeper understanding of the separate attributes that make each object unique,” said Itti. “This new disentanglement approach, for the first time, truly unleashes a new sense of imagination in A.I. systems, bringing them closer to humans’ understanding of the world.”
Original Article: USC researchers enable AI to use its “imagination.”
More from: University of Southern California Viterbi School of Engineering
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Imagination in artificial intelligence systems
- Why AI art makers are Disneyland for your imagination (and how to try one)
With mere words, an AI can make a brilliant image or something a little crazy. What is this world of AI art, and how can you try it?
- AI asked to show an image from inside a black hole
A new artificial intelligence system has been asked to produce an image from inside of a black hole, and the results are stunning.
- On Artificial General Intelligence, AI Sentience, And Large Language Models
In case you haven’t noticed, artificial intelligence systems have been behaving in increasingly astonishing ways lately. Meanwhile, DeepMind recently announced a new model called Gato that can ...
- How A.I. Could Help You Design Your Perfect Office (or Store)
The Salt Lake City-based startup's free app, Bubbles, which is scheduled to soft launch in the third quarter of 2022, uses artificial intelligence ... worked to create a system with a "video ...
- Sony AI's Pete Wurman to Deliver Keynote at IJCAI on Training the World's Best Gran Turismo™ Racer: Gran Turismo Sophy™
TOKYO, July 22, 2022 /PRNewswire/ -- Sony AI, a leader in human-centric artificial intelligence (AI) established with the mission to unleash human imagination and creativity with AI, today ...
Go deeper with Google Headlines on:
Imagination in artificial intelligence systems
Go deeper with Bing News on:
Controllable disentangled representation learning
- Creating and Comparing Dictionary, Word Embedding, and Transformer-Based Models to Measure Discrete Emotions in German Political Text
To do so, we use approximately 10,000 crowd-coded sentences in German to provide training and test data for the machine learning classifiers ... Yet, bag-of-words representation of text perceives ...
- Bitcoin Is The Safest Place For Your Money
Money and time, then, cannot be disentangled — they are synonymous — money simply being a representation of expended time ... CBDCs will allow the issuer to enact full control over its users’ money: ...
- Pakistan: A Political History
Consequently the league had no real control over either the politicians or the populace ... Ranging controversies over the issue of the national language, the role of Islam, provincial representation, ...
- Cultural Reception, Translation and Transformation from Medieval to Modern Italy: Essays in Honour of Martin McLaughlin
Historically, both from a literary and a language learning perspective, the two strands could hardly be disentangled, and yet the focus ... We all feel acutely our inability to control the course of ...
- Artificial Intelligence
This is enabled via fundamental concepts in reasoning, prediction, supervised, semi-supervised and unsupervised learning, and stochastic optimization techniques. Our research involves (i) fundamental ...