
via Georgia Institute of Technology
A new wearable brain-machine interface (BMI) system could improve the quality of life for people with motor dysfunction or paralysis, even those struggling with locked-in syndrome – when a person is fully conscious but unable to move or communicate.
A multi-institutional, international team of researchers led by the lab of Woon-Hong Yeo at the Georgia Institute of Technology combined wireless soft scalp electronics and virtual reality in a BMI system that allows the user to imagine an action and wirelessly control a wheelchair or robotic arm.
The team, which included researchers from the University of Kent (United Kingdom) and Yonsei University (Republic of Korea), describes the new motor imagery-based BMI system this month in the journal Advanced Science.
“The major advantage of this system to the user, compared to what currently exists, is that it is soft and comfortable to wear, and doesn’t have any wires,” said Yeo, associate professor on the George W. Woodruff School of Mechanical Engineering.
BMI systems are a rehabilitation technology that analyzes a person’s brain signals and translates that neural activity into commands, turning intentions into actions. The most common non-invasive method for acquiring those signals is ElectroEncephaloGraphy, EEG, which typically requires a cumbersome electrode skull cap and a tangled web of wires.
These devices generally rely heavily on gels and pastes to help maintain skin contact, require extensive set-up times, are generally inconvenient and uncomfortable to use. The devices also often suffer from poor signal acquisition due to material degradation or motion artifacts – the ancillary “noise” which may be caused by something like teeth grinding or eye blinking. This noise shows up in brain-data and must be filtered out.
The portable EEG system Yeo designed, integrating imperceptible microneedle electrodes with soft wireless circuits, offers improved signal acquisition. Accurately measuring those brain signals is critical to determining what actions a user wants to perform, so the team integrated a powerful machine learning algorithm and virtual reality component to address that challenge.
The new system was tested with four human subjects, but hasn’t been studied with disabled individuals yet.
“This is just a first demonstration, but we’re thrilled with what we have seen,” noted Yeo, Director of Georgia Tech’s Center for Human-Centric Interfaces and Engineering under the Institute for Electronics and Nanotechnology, and a member of the Petit Institute for Bioengineering and Bioscience.
New Paradigm
Yeo’s team originally introduced soft, wearable EEG brain-machine interface in a 2019 study published in the Nature Machine Intelligence. The lead author of that work, Musa Mahmood, was also the lead author of the team’s new research paper.
“This new brain-machine interface uses an entirely different paradigm, involving imagined motor actions, such as grasping with either hand, which frees the subject from having to look at too much stimuli,” said Mahmood, a Ph. D. student in Yeo’s lab.
In the 2021 study, users demonstrated accurate control of virtual reality exercises using their thoughts – their motor imagery. The visual cues enhance the process for both the user and the researchers gathering information.
“The virtual prompts have proven to be very helpful,” Yeo said. “They speed up and improve user engagement and accuracy. And we were able to record continuous, high-quality motor imagery activity.”
According to Mahmood, future work on the system will focus on optimizing electrode placement and more advanced integration of stimulus-based EEG, using what they’ve learned from the last two studies.
Original Article: Wearable Brain-Machine Interface Turns Intentions into Actions
More from: Georgia Institute of Technology | University of Kent | Yonsei University
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Wearable brain-machine interface
- Tianjin University at forefront of technological creation
Developed by Tianjin University, the technology, known as noninvasive Brain Computer Interface, or BCI, is now at the forefront of such open-source information being shared. For example, the ...
- Precision Neuroscience is making brain implants safer, smarter and reversible
Brain researchers have relied on devices called microelectrode arrays for decades, but the technology behind these tools is increasingly outdated. Precision Neuroscience is building a modern ...
- A neuro-chip to manage brain disorders
Researchers have combined low-power chip design, machine learning algorithms, and soft implantable electrodes to produce a neural interface that can identify and suppress symptoms of various ...
- Brain Computer Interface (BCI) Market 2023 Industry Growth Status, CAGR Value, Emerging Trends, and Leading Players Forecast to 2029
Jan 30, 2023 (The Expresswire) -- Latest [103 Pages] “Brain Computer Interface (BCI) Market” Research 2023-2029 demonstrates top countries data, development trends and regional updates of top ...
- New brain-computer interface transmits thoughts to speech in record time
Elon Musk’s Neuralink is among several companies working on brain-computer interfaces A new brain-computer interface (BCI) has set a new record for translating thoughts to speech ...
Go deeper with Google Headlines on:
Wearable brain-machine interface
[google_news title=”” keyword=”wearable brain-machine interface” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Brain-machine interface
- What QA Teams Should Know About Machine Learning For Software Testing
The pace of software delivery is unrecognizable from only a few years ago as tech companies release products at breakneck speed, driving QA teams to expand their toolkit in order to remain competitive ...
- Brain Machine Interface Market Geographical Segmentation By Forecast Revenue 2023-2028
Final Report will add the analysis of the impact of Russia-Ukraine War and COVID-19 on this Brain Machine Interface Industry. " Brain Machine Interface Market " Insights 2023 - By Applications ...
- Precision Neuroscience is making brain implants safer, smarter and reversible
Brain researchers have relied on devices called microelectrode arrays for decades, but the technology behind these tools is increasingly outdated. Precision Neuroscience is building a modern ...
- A neuro-chip to manage brain disorders
Researchers have combined low-power chip design, machine learning algorithms, and soft implantable electrodes to produce a neural interface that can identify and suppress symptoms of various ...
- A neuro-chip to manage brain disorders
EPFL researchers have combined low-power chip design, machine learning algorithms, and soft implantable electrodes to produce a neural interface that can identify and suppress symptoms of various ...
Go deeper with Google Headlines on:
Brain-machine interface
[google_news title=”” keyword=”brain-machine interface” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]