
Crystalline 3D patterns of gold-polystyrene nanoparticles. Images captured via STEM tomography at the Molecular Foundry.
(Credit: Berkeley Lab)
Scientists at Berkeley Lab, UC Berkeley design 3D-grown material that could speed up production of new technologies for smart buildings and robotics
Crystallization is one of the most fundamental processes found in nature – and it’s what gives minerals, gems, metals, and even proteins their structure.
In the past couple of decades, scientists have tried to uncover how natural crystals self-assemble and grow – and their pioneering work has led to some exciting new technologies – from the quantum dots behind colorful QLED TV displays, to peptoids, a protein-mimic that has inspired dozens of biotech breakthroughs.
Now, a research team led by scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley has developed a nanoparticle composite that grows into 3D crystals. The scientists say that the new material – which they call a 3D PGNP (polymer-grafted nanoparticle) crystal in their recently published Nature Communications study – could lead to new technologies that are 3D-grown rather than 3D-printed.
“We’ve demonstrated a new lever to turn, so to speak, to grow a crystalline material into a composite or structured material for applications ranging from nanoscale photonics for smart buildings to actuators for robotics,” said Ting Xu, senior author of the study. Xu is a faculty senior scientist in Berkeley Lab’s Materials Sciences Division and professor of chemistry and materials science and engineering at UC Berkeley.
Xu said that their new method is compatible with the demands of mass manufacturing. “Many smart minds have designed elegant chemistries, such as DNAs and supramolecules, to crystallize nanoparticles. Our system is essentially a blend of nanoparticle and polymers – which are similar to the ingredients people use to make airplane wings or automobile bumpers. But what’s even more interesting is that we didn’t expect our method to be so simple and so fast,” Xu said.
A chance discovery
Lead author Yiwen Qian, a Ph.D. student researcher in the Xu Group at UC Berkeley, discovered the 3D PGNP nanocrystals by chance in an ordinary lab experiment.
A couple of days before, she had left a solution of toluene solvent and gold nanoparticles grafted with polystyrene (Au-PS) in a centrifuge tube on a lab counter. When she looked at the sample under a transmission electron microscope (TEM), she noticed something odd. “Nanoparticles had crystallized quickly. That was not a normal thing to expect,” she said.
To investigate, Xu collaborated with Peter Ercius, a staff scientist at Berkeley Lab’s Molecular Foundry, and Wolfgang Theis and Alessandra DaSilva of the University of Birmingham, all of whom are widely regarded for their expertise in STEM (scanning transmission electron microscopy) tomography, an electron microscopy technique that uses a highly focused beam of electrons to reconstruct images of a material’s 3D structure at high resolution.
Using microscopes at the Molecular Foundry, a world-leading user facility in STEM tomography, the researchers first captured crystalline 3D patterns of the Au-PS nanoparticles.
On the hunt for more clues, Xu and Qian then deployed nuclear magnetic resonance spectroscopy experiments at UC Berkeley, where they discovered a tiny trace of polyolefin molecules from the centrifuge tube lining had somehow entered the mix. Polyolefins, which include polyethylene and polypropylene, are some of the most ubiquitous plastics in the world.
Qian repeated the experiment, adding more polyolefin to the Au-PS solution – and this time, they got bigger 3D PGNP crystals within minutes.
Xu was surprised. “I thought, ‘This shouldn’t be happening so fast,’” she recalled. “Crystals of nanoparticles usually take days to grow in the lab.”
A boon for industry: growing materials at the nanolevel
Subsequent experiments revealed that as the toluene solvent quickly evaporates at room temperature, the polyolefin additive helps the Au-PS nanoparticles form into 3D PGNP crystals, and to “grow into their favorite crystal structure,” said Qian.
In another key experiment, the researchers designed a self-assembling 100-200-nanometer crystalline disc that looks like the base of a pyramid. From this stunning demonstration of mastery over matter at the nanolevel, the researchers learned that the size and shape of the 3D PGNP crystals are driven by the kinetic energy of the polyolefins as they precipitate in the solution.
Altogether, these findings “provide a model for showing how you can control the crystal structure at the single particle level,” Xu said, adding that their discovery is exciting because it provides new insight into how crystals form during the early stages of nucleation.
“And that’s challenging to do because it’s hard to make atoms sit next to each other,” Ercius said.
The new approach could grant researchers unprecedented control in fine-tuning electronic and optical devices at the nanolevel (billionths of a meter), Xu said. Such nanoparticle-scale precision, she added, could speed up production and eliminate errors in manufacturing.
Looking ahead, Qian would like to use their new technique to probe the toughness of different crystal structures – and perhaps even make a hexagonal crystal.
Xu plans to use their technique to grow bigger devices such as a transistor or perhaps 3D-print nanoparticles from a mix of materials.
“What can you do with different morphologies? We’ve shown that it’s possible to generate a single-component composite from a mineral and a polymer. It’s really exciting. Sometimes you just need to be in the right place at the right time,” Xu said.
Original Article: This Crystal Impurity Is Sheer Perfection
More from: Lawrence Berkeley National Laboratory | University of California Berkeley | University of Birmingham
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
3D-grown technologies
- 3D Systems enters battle for control of Stratasys with $25 per share cash-and-stock offer
The battle for control of polymer 3-D printing company Stratasys Ltd. took yet another turn on Friday, when 3D Systems Corp. entered the fray.
- From 3D printing to virtual control towers, City Lab aims to turn Hilliard into tech 'playground'
Hilliard City Lab is a new private-public partnership that provides tech companies with access to infrastructure, expertise and funding opportunities.
- The Most Significant Industry-Changing Technologies of 2023
As we delve further into the digital era, rapid advancements in technology continue to reshape our lives, disrupt existing industries, and create new opportunities. This article examines some of the ...
- The Future Of Web Development: Emerging Technologies And Trends To Watch Out For
The field of web development is constantly changing, so it’s essential to remain on top of recent trends and technologies. Especially if you want to stay competitive. The future of web development is ...
- 3D Semiconductor Packaging Market is anticipated to grow at a CAGR of 19% during 2023-2028
The global 3D semiconductor packaging market is projected to reach $8.7 billion by 2028, at a CAGR of 19% during 2023-2028. The growth of 3D semiconductor packaging market is driven by high demand for ...
Go deeper with Google Headlines on:
3D-grown technologies
[google_news title=”” keyword=”3D-grown technologies” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
3D PGNP
- Electroplating 3D Printed Parts For Great Strength
Resin 3D printers have a significant advantage over filament printers in that they are able to print smaller parts with more fine detail. The main downside is that the resin parts aren’t ...
- Threading 3D Printed Parts: How To Use Heat-Set Inserts
We can make our 3D-printed parts even more capable when we start mixing them with some essential “mechanical vitamins.” By combining prints with screws, nuts, fasteners, and pins, we get a ...
- This deal gets you a 3D printer for $140
And, when it comes to cool stuff you can’t buy on shelves, it seems like the best answer comes in the form of a 3D printer. Of course, even at the first mention of the phrase “3D printer ...
- Best 3D Printing Services Of 2023
Commissions do not affect our editors' opinions or evaluations. The 3D printing industry is valued at more than $17 billion and it is expected to more than double that by 2026. There are many ...
- The best 3D printers under $1,000 for 2023
You don't need a huge operating budget to start 3D printing at home. This is a very solid mix of price, features, and ease of use. It’s easy to use but its open design allows for large ...
Go deeper with Google Headlines on:
3D PGNP
[google_news title=”” keyword=”3D PGNP” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]