via University of Cambridge
Researchers have created a plant-based, sustainable, scalable material that could replace single-use plastics in many consumer products.
It was a surprise to find our research could also address a big problem in sustainability: that of plastic pollution
Tuomas Knowles
The researchers, from the University of Cambridge, created a polymer film by mimicking the properties of spider silk, one of the strongest materials in nature. The new material is as strong as many common plastics in use today and could replace plastic in many common household products.
The material was created using a new approach for assembling plant proteins into materials that mimic silk on a molecular level. The energy-efficient method, which uses sustainable ingredients, results in a plastic-like free-standing film, which can be made at industrial scale. Non-fading ‘structural’ colour can be added to the polymer, and it can also be used to make water-resistant coatings.
The material is home compostable, whereas other types of bioplastics require industrial composting facilities to degrade. In addition, the Cambridge-developed material requires no chemical modifications to its natural building blocks, so that it can safely degrade in most natural environments.
The new product will be commercialised by Xampla, a University of Cambridge spin-out company developing replacements for single-use plastic and microplastics. The company will introduce a range of single-use sachets and capsules later this year, which can replace the plastic used in everyday products like dishwasher tablets and laundry detergent capsules. The results are reported in the journal Nature Communications.
For many years, Professor Tuomas Knowles in Cambridge’s Yusuf Hamied Department of Chemistry has been researching the behaviour of proteins. Much of his research has been focused on what happens when proteins misfold or ‘misbehave’, and how this relates to health and human disease, primarily Alzheimer’s disease.
“We normally investigate how functional protein interactions allow us to stay healthy and how irregular interactions are implicated in Alzheimer’s disease,” said Knowles, who led the current research. “It was a surprise to find our research could also address a big problem in sustainability: that of plastic pollution.”
As part of their protein research, Knowles and his group became interested in why materials like spider silk are so strong when they have such weak molecular bonds. “We found that one of the key features that gives spider silk its strength is the hydrogen bonds are arranged regularly in space and at a very high density,” said Knowles.
Co-author Dr Marc Rodriguez Garcia, a postdoctoral researcher in Knowles’ group who is now Head of R&D at Xampla, began looking at how to replicate this regular self-assembly in other proteins. Proteins have a propensity for molecular self-organisation and self-assembly, and plant proteins, in particular, are abundant and can be sourced sustainably as by-products of the food industry.
“Very little is known about the self-assembly of plant proteins, and it’s exciting to know that by filling this knowledge gap we can find alternatives to single-use plastics,” said PhD candidate Ayaka Kamada, the paper’s first author.
The researchers successfully replicated the structures found on spider silk by using soy protein isolate, a protein with a completely different composition. “Because all proteins are made of polypeptide chains, under the right conditions we can cause plant proteins to self-assemble just like spider silk,” said Knowles, who is also a Fellow of St John’s College. “In a spider, the silk protein is dissolved in an aqueous solution, which then assembles into an immensely strong fibre through a spinning process which requires very little energy.”
“Other researchers have been working directly with silk materials as a plastic replacement, but they’re still an animal product,” said Rodriguez Garcia. “In a way, we’ve come up with ‘vegan spider silk’ – we’ve created the same material without the spider.”
Any replacement for plastic requires another polymer – the two in nature that exist in abundance are polysaccharides and polypeptides. Cellulose and nanocellulose are polysaccharides and have been used for a range of applications, but often require some form of cross-linking to form strong materials. Proteins self-assemble and can form strong materials like silk without any chemical modifications, but they are much harder to work with.
The researchers used soy protein isolate (SPI) as their test plant protein, since it is readily available as a by-product of soybean oil production. Plant proteins such as SPI are poorly soluble in water, making it hard to control their self-assembly into ordered structures.
The new technique uses an environmentally friendly mixture of acetic acid and water, combined with ultrasonication and high temperatures, to improve the solubility of the SPI. This method produces protein structures with enhanced inter-molecular interactions guided by the hydrogen bond formation. In a second step, the solvent is removed, which results in a water-insoluble film.
The material has a performance equivalent to high-performance engineering plastics such as low-density polyethylene. Its strength lies in the regular arrangement of the polypeptide chains, meaning there is no need for chemical cross-linking, which is frequently used to improve the performance and resistance of biopolymer films. The most commonly used cross-linking agents are non-sustainable and can even be toxic, whereas no toxic elements are required for the Cambridge-developed technique.
“This is the culmination of something we’ve been working on for over ten years, which is understanding how nature generates materials from proteins,” said Knowles. “We didn’t set out to solve a sustainability challenge — we were motivated by curiosity as to how to create strong materials from weak interactions.”
“The key breakthrough here is being able to control self-assembly, so we can now create high-performance materials,” said Rodriguez Garcia. “It’s exciting to be part of this journey. There is a huge, huge issue of plastic pollution in the world, and we are in the fortunate position to be able to do something about it.”
Original Article: ‘Vegan spider silk’ provides sustainable alternative to single-use plastics
More from: University of Cambridge
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Vegan spider silk
- Vegans who lift weights may have stronger bones than other people on a plant-based diet
Oct. 30, 2018 — A predominantly plant-based or vegan diet may be best for keeping type 2 diabetes in check, not least because of its potential impact on mood, suggests a systematic review of the ...
- Researchers create biosensor by turning spider silk into optical fiber
Researchers have harnessed the light-guiding properties of spider silk to develop a sensor that can be used to determine concentrations of fructose, sucrose and glucose sugars based on changes in a ...
- How to do the ‘What color is your name?’ quiz on TikTok
A woman with synesthesia created a program that allows you to see your name through her eyes. Synesthesia is a neurological condition that causes the overlapping of the senses. That means ...
- Silk: The Spider-Verse Heroine Is a Huge Missed Opportunity for Marvel
Silk has the potential to be a cool character, but controversy and fan rejection have kept her from being as popular as Miles Morales.
- 22 best mooncakes to savour this Mid-Autumn Festival 2022
Growing up, the Mid-Autumn Festival has always been a special holiday for me. As a child, I remember lighting paper lanterns and admiring its colourful glow while walking around the neighbourhood with ...
Go deeper with Google Headlines on:
Vegan spider silk
Go deeper with Bing News on:
Plastic replacement
- Ludhiana | With ban on single-use plastic, eco-friendly products are here to stay
The raw material for eco-friendly products is not available in India, therefore, it is imported from the Netherlands, which adds to their cost along with the 18 per cent GST. The cost of these ...
- USF student invents lumber alternative using recycled plastic
The material will be used as a replacement for wood to create fence posts that can last 30 to 50 years, about three times longer than a traditional wood fence.
- Student invents structural lumber alternative using recycled plastic
The ultra-strong recycled material, Recycled Plastic Lumber, is made of polymer-reinforced composites, a material that is reinforced like concrete. The material will be used as a replacement for wood ...
- Mastercard’s vision in favor of cryptocurrency to move beyond plastic
Mastercard has always been vocal about its vision of catering to nature and giving it back to the nature in its best potential. Out of such a vision, the Chief Financial Officer Sachin Mehra, remarked ...
- Is advanced recycling the answer to plastic waste?
Welcome to the promise of a suite of technologies known as advanced recycling — but also as chemical recycling, molecular recycling and several other things. The plethora of monikers begins to frame ...