via University of Glasgow
The findings raise the possibility of identifying vaccine targets for trypanosome species that cause the deadly human infections sleeping sickness and Chagas’ disease
The first ever vaccine target for trypanosomes, a family of parasites that cause devastating disease in animals and humans, has been discovered by scientists at the Wellcome Sanger Institute. By targeting a protein on the cell surface of the parasite Trypanosoma vivax, researchers were able to confer long-lasting protection against animal African trypanosomiasis (AAT) infection in mice.
The study, published today (26 May 2021) in Nature, is the first successful attempt to induce apparently sterile immunity against a trypanosome parasite. A vaccine was long thought impossible due to the sophisticated ability of the parasites to evade the host immune system. As well as a strong vaccine target for AAT, the findings raise the possibility of identifying vaccine targets for trypanosome species that cause the deadly human infections sleeping sickness and Chagas’ disease.
Animal African trypanosomiasis (AAT) is a devastating disease affecting livestock in Africa and, more recently, South America. It is caused by several species of Trypanosoma parasite, which are transmitted by tsetse flies, causing animals to suffer from fever, weakness, lethargy and anaemia. The resulting weight loss, low fertility and reduced milk yields have a huge economic impact on the people who depend on these animals. The disease has been said to lie at the heart of poverty in Africa1.
In humans, a disease called sleeping sickness is caused by infection with another trypanosome species, Trypanosoma brucei. Although control efforts have reduced the number of infections each year considerably, 65 million people remain at risk. In South America, the potentially life-threatening infection Chagas’ disease is caused by Trypanosoma cruzi and affects at least 6 million people living in endemic areas2.
All trypanosome species have developed sophisticated anti-immune mechanisms that allow the parasites to thrive in their host. For example, African trypanosomes display a protein on their surface that constantly changes and prevents host antibodies from recognising the pathogen. Until now, it was thought impossible to vaccinate against trypanosome infection for this reason.
In this study, scientists at the Wellcome Sanger Institute analysed the genome of T. vivax to identify 60 cell surface proteins that could be viable vaccine targets. Each protein was produced using mammalian cell lines and then used to vaccinate mice to determine if the host immune system had been instructed to identify and destroy the T. vivax parasite.
One cell surface protein, named ‘invariant flagellum antigen from T. vivax’ (IFX), was observed to confer immunity against infection in almost all vaccinated mice for at least 170 days after experimental challenge with T. vivax parasites.
“Scientists have been searching for a way to vaccinate against animal African trypanosomiasis (AAT) since the parasite and vector were first discovered in the early 20th century. We’ve heard a lot about vaccines recently, but compared to a virus protozoan parasites have a huge number of proteins, making it very difficult to identify the right targets. Several of the 60 targets we tested elicited a partial immune response, but only one conferred the long-lasting protection that makes it a promising vaccine candidate.”
Dr Delphine Autheman, first author of the study from the Wellcome Sanger Institute
Though drugs exist to prevent or treat AAT, many communities that require them live in remote locations that are difficult to access. Reliance on a handful of drugs, and a lack of professional expertise in their administration, are thought to be contributing to increased drug resistance in the parasites3. An effective vaccine would help to overcome some of these practical barriers.
“It was considered impossible to vaccinate against trypanosome parasites because of the sophisticated immune-protective mechanisms they have evolved, so I’m delighted that we have been able to demonstrate that this can be done. Beyond the obvious benefit of a strong vaccine candidate for animal trypanosomiasis, the genome-led vaccine approach we outline in this study is one that could potentially be applied to other trypanosome species and other parasite families.”
Dr Andrew Jackson, a senior author of the study from the University of Liverpool
The next step will be to validate the results using a cattle model. If successful, work could begin on developing a vaccine for AAT that would be an important tool for tackling poverty in affected regions.
“This study is an important first step toward relieving the burden of animal African trypanosomiasis (AAT) on both animals and humans in Africa and South America. The protective effect of the vaccine target we identified will first need to be replicated in a cattle model, but I think we can be cautiously optimistic that in a few years’ time we will have made substantial progress against this devastating disease.”
Dr Gavin Wright, a senior author of the study from the Wellcome Sanger Institute and the University of York
Original Article: Discovery of vaccine target for devastating livestock disease could change lives of millions in sub-Saharan Africa
More from: Wellcome Trust Sanger Institute | University of York
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Trypanosomes
- The Biochemical journal
Pyroglutamyl peptidase type I from Trypanosoma brucei: a new virulence factor from African trypanosomes that de-blocks regulatory peptides in the plasma of infected hosts.
- The American Society of Microbiology names Bangs a Fellow
For more than 35 years, Bangs has conducted research on African trypanosomes, single-celled parasites transmitted by the tsetse fly, which cause African sleeping sickness in humans, a fatal, ...
- Experts warn about the need for seeking novel treatments for parasitic worm diseases
While trypanosomes and plasmodia [which cause malaria] can be maintained more easily, for worms we need rodents and snails as intermediate and definitive hosts. Research on other parasites therefo ...
- A Modified Treatment Schedule Wipes Out Dormant, Drug-Evading Parasites in Mice (4 of 4) (VIDEO)
The paper, by J.M. Bustamante at University of Georgia in Athens, Greece; and colleagues was titled, "A modified drug regimen clears active and dormant trypanosomes in mouse models of Chagas disease." ...
- Original free sample of Bayer 205, suramin powder, Germany, 1926
Original free sample, in bottle, of Bayer 205, suramin powder, by Friedrich Bayer and Co., Germany, 1926; Bayer 205, now known as suramin, is effective against micro-organisms called trypanosomes, ...
Go deeper with Google Headlines on:
Trypanosomes
Go deeper with Bing News on:
Trypanosomes vaccine
- AI predicts the structure of all known proteins and opens a new universe for science
The DeepMind lab, owned by the same company as Google, has calculated the predicted shapes of 200 million molecules, some of them essential for understanding devastating diseases such as Alzheimer’s o ...
- Lakpini: NAPRI’s Research Facilities are Old and Obsolete
In doing this, they are to: develop and produce Vaccines, Sera and Biological ... conducts research into the control and surveillance of Trypanosomes to man and animals. Therefore the mandates ...
- Pneumocystis Pneumonia
Pneumocystis pneumonia is often the AIDS-defining illness in patients infected with HIV, occurring most frequently when the T-helper cell count (CD4+) is less than 200 cells per cubic millimeter.
- South Africa—blazing a trail for African biotechnology
South Africa is also taking a leading role in the development of vaccines, most notably for ... in drug target discovery in trypanosomes. South Africa also has a strong presence of multinational ...
- Experts Warn Novel Treatments for Parasitic Worm Diseases Are Needed
The goals include development of novel medications, given the lack of effective treatments and vaccines for the diseases in question ... is culturing the parasites in the laboratory. While ...