
Bingyuan Ma holding a transparent capillary cell. Bai’s Lab at the McKelvey School of Engineering is the only one in the world with such diagnostic cells.
(Courtesy: Bai Lab)
One-of-a-kind tool helped solve anode puzzle that thwarted previous attempts
When it comes to batteries, lithium-ion are the best we have as far as energy density and convenience.
For now.
The Washington University in St. Louis lab of Peng Bai, assistant professor in the Department of Energy, Environmental & Chemical Engineering in the McKelvey School of Engineering, has developed a stable sodium ion battery that is highly efficient, will be less expensive to make and is significantly smaller than a traditional lithium ion battery due to the elimination of a once-necessary feature.
“We’ve found that the minimal is maximum,” Bai said. “No anode is the best anode.”
The research was published May 3, 2021, in the journal Advanced Science.
A traditional lithium ion battery consists of a cathode and anode, both of which store lithium ions; a separator to keep the electrodes separated on either side; and an electrolyte — the liquid through which the ions move. When lithium flows from the anode to the cathode, free electrons leave through the current collector to the device being powered while the lithium passes the separator to the cathode.
To charge, the process is reversed, and the lithium passes from the cathode, through the separator, to the anode.
The concept of replacing lithium with sodium and doing away with the anode isn’t new.
“We used old chemistry,” Bai said. “But the problem has been, with this well-known chemistry, no one ever showed this anode-free battery can have a reasonable lifetime. They always fail very quickly or have a very low capacity or require special processing of the current collector.”
Anode-free batteries tend to be unstable, growing dendrites — finger-like growths that can cause a battery to short or simply to degrade quickly. This conventionally has been attributed to the reactivity of the alkali metals involved, in this case, sodium.
In this newly designed battery, only a thin layer of copper foil was used on the anode side as the current collector, i.e., the battery has no active anode material. Instead of flowing to an anode where they sit until time to move back to the cathode, in the anode-free battery the ions are transformed into a metal. First, they plate themselves onto copper foil, then they dissolve away when it’s time to return to the cathode.
“In our discovery, there are no dendrites, no finger-like structures,” said Bingyuan Ma, the paper’s first author and a doctoral student in Bai’s lab. The deposit is smooth, with a metal luster. “This kind of growth mode has never been observed for this kind of alkali metal.”
“Observing” is key. Bai has developed a unique, transparent capillary cell that offers a new way to look at batteries. Traditionally, when a battery fails, in order to determine what went wrong, a researcher can open it up and take a look. But that after-the-fact kind of observation has limited usefulness.
“All of the battery’s instabilities accumulate during the working process,” Bai said. ”What really matters is instability during the dynamic process, and there’s no method to characterize that.” Watching Ma’s anode-free capillary cell, “We could clearly see that if you don’t have good quality control of your electrolyte, you’ll see various instabilities,” including the formation of dendrites, Bai said.
Essentially, it comes down to how much water is in the electrolyte.
Alkali metals react with water, so the research team brought the water content down. “We were hoping just to see a good performance,” Bai said. Watching the battery in action, the researchers shortly saw shiny, smooth deposits of sodium. It’s the smoothness of the material that eliminates morphological irregularities that can lead to the growth of dendrites.
Original Article: Bai lab develops stable, efficient, anode-free sodium battery
More from: Washington University in St. Louis
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Anode-free sodium battery
- BioLargo acquires sodium-sulfur battery technology to produce new energy solution
BioLargo CEO Dennis Calvert joins Natalie Stoberman from the Proactive studios to share the opportunity behind its acquisition of sodium-sulfur battery energy storage technology. Calvert says the ...
- Silicon Anode Battery Market 2023 Size and Forecast to 2030
Mar 22, 2023 (The Expresswire) -- Silicon Anode Battery Marketinformation for each competitor includes (Panasonic Corporation, Samsung SDI, XG Sciences, LG Chem Ltd., Boston-Power, Inc., Amprius ...
- Scientists use crab shells to develop battery anodes
sodium ions are larger, and thus incompatible with a lithium-ion battery’s anode, which is typically made of graphite. However, when hard carbon is combined with metallic semiconductor materials ...
- Cylindrical Silicon Anode Battery Market to 2023-2028
Mar 14, 2023 (The Expresswire) -- Cylindrical Silicon Anode Battery Marketinformation for each competitor includes (, Amprius, Inc. (U.S.), Panasonic Corp (Japan), Samsung SDI (South Korea), LG ...
- Common Adhesive Tape Used to Build a Better Battery
The layer works as an anode, which is typically made of graphite in lithium-ion designs. Related: AI Predicts Battery Health Researchers were inspired to use the tape from previous attempts to produce ...
Go deeper with Google Headlines on:
Anode-free sodium battery
[google_news title=”” keyword=”anode-free sodium battery” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Sodium ion battery
- Sparc Technologies claims “exciting” progress on sodium ion batteries
ASX listed Sparc Technologies reports “exciting” developments in its pursuit of sodium ion batteries, an alternative to lithium ion.
- Sparcs says biowaste-based anode material for sodium ion batteries is cheaper and faster
Sparc Technologies says its project with the Queensland University of Technology (QUT) targeting development of sustainably sourced hard ... Read More The post Sparcs says biowaste-based anode ...
- Novel oxygen-ion battery may offer longer lifespan, claims TU Wien
Austrian scientists have created a lab-scale, solid-state, oxygen ion battery based on mixed ionic electronic conducting (MIEC), which is a special class of non-flammable electroceramic materials. The ...
- BioLargo acquires sodium-sulfur battery technology to produce new energy solution
BioLargo CEO Dennis Calvert joins Natalie Stoberman from the Proactive studios to share the opportunity behind its acquisition of sodium-sulfur battery energy storage technology. Calvert says the ...
- BioLargo acquires proprietary sodium-sulfur battery technology
This sodium-sulfur battery technology demonstrates increased safety, no runaway fire risks, and a more sustainable design - with no rare-earth elements - that is capable of being manufactured ...
Go deeper with Google Headlines on:
Sodium ion battery
[google_news title=”” keyword=”sodium ion battery” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]