via Ames Laboratory
Scientists at the U.S. Department of Energy’s Ames Laboratory and their partners from Clemson University have discovered a green, low-energy process to break down polystyrene, a type of plastic that is widely used in foam packaging materials, disposable food containers, cutlery, and many other applications.
Polystyrene is part of a much larger global plastic waste problem. Hundreds of millions metric tons of polymers are produced each year, a large majority of which is discarded after use. Due to the chemical stability and durability of industrial polymers, plastic waste does not easily degrade in landfills and is often burned, which produces carbon dioxide and other hazardous gases. In order to stop the growing flood of polymer waste and reduce carbon dioxide emissions, plastics have to be recycled or converted into new value-added products.
Currently, recycling of the vast majority of plastics is not economically feasible; their sorting and separation are time and labor intensive, while chemical processing and remanufacturing requires a significant energy input and toxic solvents. Re-processed polymers often show inferior performance to that of the freshly manufactured “made from scratch” materials.
A team of scientists at Ames Laboratory used processing by ball-milling to deconstruct commercial polystyrene in a single step, at room temperature, in ambient atmosphere in the absence of harmful solvents. Ball-milling is a technique that places materials in a milling vial with metal ball bearings which is then agitated until a desired chemical reaction occurs. Called mechanochemistry, this experimental approach has numerous applications in new materials synthesis, and attractive features where plastics recycling is concerned.
The deconstruction of polystyrene proceeds through a series of chemical events involving mechanical cutting apart of the macromolecules, which generates free radicals detectable in the milled material even after its prolonged exposure to air. The metal bearings used for milling and the ambient oxygen act as co-catalysts that enable extraction of the monomeric styrene from the oligomeric radical-bearing species formed. The experiments showed that the temperature rise in the material during milling is not responsible for the observed phenomenon since the temperature inside the milled powder does not exceed 50oC while the thermal decomposition of polystyrene in air starts at about 325oC. The Clemson’s group confirmed the comprehensive deconstruction of the original polymer into smaller fragments, oligomeric materials, suitable for further processing into new value-added products.
“This method represents an important breakthrough that enables dismantling of a polymer simultaneously with its break-down under ambient conditions, that is, ~300oC below the thermal decomposition temperature of the pristine material” said Ames Laboratory Senior Scientist Viktor Balema. “We think this proof of concept is an exciting possibility for developing new recycling technologies for all kinds of plastics, and that will contribute to establishment of the circular economy.”
His partner from Clemson University, Kentwool Distinguished Professor Igor Luzinov, further commented that “this discovery opens new avenues for low temperature recovery of monomers from multicomponent polymer based systems such as composites and laminates. Also, our technology will allow extracting the monomer from crosslinked materials containing styrene units in their structures.”
Alfred P. Sloan Foundation Research Fellow, Professor Aaron Rossini of Iowa State University, further noted that “electron paramagnetic resonance spectroscopy shows large concentrations of free radical carbon-centered species in polystyrene that was milled in air. This is a startling result because free radicals are normally very reactive. Also, the presence of the radicals gives direct evidence that the milling directly causes scission of the polymer chains. We expect that the reactive sites associated with the free radicals can be used to functionalize the processed polymers to obtain new value-added products.”
Original Article: Polystyrene waste is everywhere, and it’s not biodegradable. Scientists just found a way to break it down
More from: Ames Laboratory | Clemson University
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Recycling polystyrene
- What a digital product passport could mean for recyclers
Recycling of rechargeable batteries ... Adding additional digital information on No. 6 polystyrene, for example, could hardly be expected to magically make it recyclable. The same goes for Misc. code ...
- Ann Arbor’s new ‘SamurAI sorting robot’ is a plastics recycling game-changer
Michigan is now one of the nation’s three best states for recycling plastics, according to a recent
- Honeywell Technology to be Used in Plastics Recycling Plant in China
China Tianying Inc. (CNTY) will apply Honeywell’s UpCycle Process Technology in its planned plastics recycling factory in Jiangsu Province.
- I’ll Trade You Some Cursed Baby Dolls and Metal Frogs for That Unwanted Banana Statue
Yarra’s mayor, Sophie Wade, rejected Mr. Oliver’s proposal to buy the banana, but she suggested an alternative: he sends the alligator statue, and the city will name its polystyrene recycling ...
- San Diego takes key step toward reviving polystyrene foam ban halted by restaurant industry litigation
San Diego took a key step this week toward reviving its ban on polystyrene foam food containers and similar products, which environmentalists blame for poisoning marine life and damaging the ...
Go deeper with Google Headlines on:
Recycling polystyrene
Go deeper with Bing News on:
Polystyrene waste
- Zeroing in on garbage: How to minimize all kinds of waste in Vancouver
The City of Vancouver has a Zero Waste strategy. Here's what that means for you, and how put less into your garbage bin.
- A trashy human twist: This man turns doll heads, Styrofoam, debris from Ohio River into art
Al Gorman has been making regular pilgrimages to the Falls of the Ohio since 2003, carrying home large amounts of debris and trash for his work.
- High Point Seeks Your Hazardous Waste But Not Your Bubble Wrap
The Household Hazardous Waste Facility at 1401 E. Martin Luther King Jr. Dr. will open for a drop-off event on that Saturday from 8 a.m. to 2 p.m. This event, which will include the ever-popular paper ...
- I’ll Trade You Some Cursed Baby Dolls and Metal Frogs for That Unwanted Banana Statue
Yarra’s mayor, Sophie Wade, rejected Mr. Oliver’s proposal to buy the banana, but she suggested an alternative: he sends the alligator statue, and the city will name its polystyrene recycling ...
- School Project Turns Plastic Waste Into Bricks
The aim of the project is to take waste plastic, in this case high-impact polystyrene, and reform it into a brick that could be used as a low-cost building material. The material is shredded ...