Scientists at UW Medicine and the NIH have created an experimental flu vaccine that spurs broad immunity in animal trials
Researchers have developed experimental flu shots that protect animals from a wide variety of seasonal and pandemic influenza strains. The vaccine product is currently being advanced toward clinical testing. If proven safe and effective, these next-generation influenza vaccines may replace current seasonal options by providing protection against many more strains that current vaccines do not adequately cover.
A study detailing how the new flu vaccines were designed and how they protect mice, ferrets, and nonhuman primates appears in the March 24 edition of the journal Nature. This work was led by researchers at the University of Washington School of Medicine and the Vaccine Research Center part of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health.

Influenza virus causes an estimated 290,000–650,000 deaths per year. Available flu vaccines, which need to be taken seasonally, often fail to protect against many circulating flu strains that cause illness, and the threat of another influenza pandemic looms.
“Most flu shots available today are quadrivalent, meaning they are made from four different flu strains. Each year, the World Health Organization makes a bet on which four strains will be most prevalent, but those predictions can be more or less accurate. This is why we often end up with ‘mismatched’ flu shots that are still helpful but only partially effective,” said lead author Daniel Ellis, a research scientist in the laboratory of Neil King. King is an assistant professor of biochemistry at the UW School of Medicine and a researcher at the Institute for Protein Design at UW Medicine.
To create improved influenza vaccines, the team attached hemagglutinin proteins from four different influenza viruses to custom-made protein nanoparticles. This approach enabled an unprecedented level of control over the molecular configuration of the resulting vaccine and yielded an improved immune response compared to conventional flu shots. The new nanoparticle vaccines, which contain the same four hemagglutinin proteins of commercially available quadrivalent influenza vaccines, elicited neutralizing antibody responses to vaccine-matched strains that were equivalent or superior to the commercial vaccines in mice, ferrets, and nonhuman primates. The nanoparticle vaccines—but not the commercial vaccines —also induced protective antibody responses to viruses not contained in the vaccine formulation. These include avian influenza viruses H5N1 and H7N9, which are considered pandemic threats.
The responses that our vaccine gives against strain-matched viruses are really strong, and the additional coverage we saw against mismatched strains could lower the risk of a bad flu season,” said Ellis.
Original Article: Nanoparticle flu shot blocks seasonal and pandemic strains
More from: University of Washington School of Medicine | National Institutes of Health
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Experimental flu vaccine
- Fight COVID-19 Virus With Newly Developed Chewing Gum
COVID-19 virus particles attached themselves to the chewing gum, which reduced the viral load to undetectable levels.
- The impact of respiratory droplet volume and their evaporation kinetics on environmental stability of respiratory viruses
Researchers measured the impact of initial respiratory droplet volume and relative humidity on the environmental stability of respiratory viruses, including influenza A and SARS-CoV-2.
- This experimental chewing gum can 'trap' COVID-19 in your saliva, researchers say
With advancing COVID-19 research, scientists have been able to devise other methods to mitigate the spread of the virus. And the latest in this cutting-edge field of research involves chewing gum that ...
- Experimental chewing gum reduces Omicron in saliva; sexual dysfunction, hair loss among long COVID symptoms
A second experimental chewing gum made with bean powder instead of lettuce cells not only traps SARS-CoV-2 particles in lab experiments but also influenza strains, other coronaviruses that cause ...
- Experimental chewing gum reduces Omicron particles in saliva, says study
The 'viral trap' experimental chewing gum promises to curb transmission of new variants of the SARS-CoV-2 particles.
Go deeper with Google Headlines on:
Experimental flu vaccine
Go deeper with Bing News on:
Nanoparticle flu vaccine
- Emergex Announces GMP Production of its CD8+ T cell Universal Influenza Vaccine
Influenza A is a segmented RNA virus and circulates ... I expression “ligandome” library), and [ii] a passivated gold nanoparticle carrier system designed to deliver the synthetic peptides ...
- Emergex Announces GMP Production of its CD8+ T cell Universal Influenza Vaccine
Emergex’s universal influenza vaccine is a radically different approach toinducinginfluenzaimmunity byemployingthe use ofa combination of: 1.HighlyconservedClass I peptides from non-structural ...
- New Universal Flu Vaccine Protects Against Influenza B Viruses
The double-layered protein nanoparticle vaccine, which is constructed with a stabilized portion of the influenza virus (the hemagglutinin (HA) stalk), induced broadly reactive immune responses and ...
- Study finds universal influenza B vaccine that induces broad and lasting protection
The double-layered protein nanoparticle vaccine, which is constructed with a stabilized portion of the influenza virus (the hemagglutinin (HA) stalk), induces broadly reactive immune responses and ...
- Universal influenza B vaccine induces broad, sustained protection, researchers find
"In this study, we generated structure-stabilized HA stalk antigens from influenza B and fabricated double-layered protein nanoparticles as universal influenza B vaccine candidates," said Dr ...