
Ultrafast lasers at the University of Sussex EPic Lab are an essential ingredient to realize ultra-thin THz sources Credit: EPic Lab, University of Sussex
Physicists from the University of Sussex have developed an extremely thin, large-area semiconductor surface source of terahertz, composed of just a few atomic layers and compatible with existing electronic platforms.
Terahertz sources emit brief light pulses oscillating at ‘trillion of times per second’. At this scale, they are too fast to be handled by standard electronics, and, until recently, too slow to be handled by optical technologies. This has great significance for the evolution of ultra-fast communication devices above the 300GHz limit—such as that required for 6G mobile phone technology—something that is still fundamentally beyond the limit of current electronics.
Researchers in the Emergent Photonics (EPic) Lab at Sussex, led by the Director of the Emergent Photonics (EPic) Lab Professor Marco Peccianti, are leaders in surface terahertz emission technology having achieved the brightest and thinnest surface semiconductor sources demonstrated so far. The emission region of their new development, a semiconductor source of terahertz, is 10 times thinner than previously achieved, with comparable or even better performances.
The thin layers can be placed on top of existing objects and devices, meaning they are able to place a terahertz source in places that would have been inconceivable otherwise, including everyday object such as a teapot or even a work of art—opening up huge potential for anti-counterfeiting and ‘the internet of things’—as well as previously incompatible electronics, such as a next generation mobile phone.
Dr. Juan S. Totero Gongora, Leverhulme Early Career Fellow at the University of Sussex, said: “From a physics perspective, our results provide a long-sought answer that dates back to the first demonstration of terahertz sources based on two-color lasers. Semiconductors are widely used in electronic technologies but have remained mostly out of reach for this type of terahertz generation mechanism. Our findings therefore open up a wide range of exciting opportunities for terahertz technologies.”
Dr. Luke Peters, Research Fellow of the European Research Council project TIMING at the University of Sussex, said: “The idea of placing terahertz sources in inaccessible places has great scientific appeal but in practice is very challenging. Terahertz radiation can have a superlative role in material science, life science and security. Nevertheless, it is still alien to most of the existing technology, including devices that talk to everyday objects as part of the rapidly expanding ‘internet of things’. This result is a milestone in our route to bring terahertz functions closer to our everyday lives.”
Lying between microwaves and infrared in the electromagnetic spectrum, terahertz waves are a form of radiation highly sought in research and industry. They have a natural ability to reveal the material composition of an object by easily penetrating common materials like paper, clothes and plastic in the same way X-rays do, but without being harmful.
Terahertz imaging makes it possible to ‘see’ the molecular composition of objects and distinguish between different materials. Previous developments from Prof Peccianti’s team showcased the potential applications of terahertz cameras, which could be transformative in airport security, and medical scanners—such as those used to detect skin cancers.
One of the biggest challenges faced by scientists working in terahertz technology is that what is commonly accepted as an ‘intense terahertz source’ is faint and bulky when compared with, for example, a light bulb. In many cases, the need for very exotic materials, such as nonlinear crystals, makes them unwieldy and expensive. This requirement poses logistical challenges for integration with other technologies, such as sensors and ultrafast communications.
The Sussex team have overcome these limitations by developing terahertz sources from extremely thin materials (about 25 atomic layers). By illuminating an electronic-grade semiconductor with two different types of lasers light, each oscillating at different frequency or color, they were able to elicit the emission of short bursts of Terahertz radiation.
This scientific breakthrough has been long-sought by scientists working in the field since the first demonstration of terahertz sources based on two-color lasers in the early 2000s. Two-color terahertz sources based on special mixtures of gas, such as nitrogen, argon or krypton, are among the best performing sources available today. Semiconductors, widely used in electronic technologies, have remained mostly out of reach for this type of terahertz generation mechanism.
Original Article: Scientists develop ultra-thin terahertz source
More from: University of Sussex
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Terahertz technologies
- Terahertz Technology Market will surpass USD 2,226 million by 2030 at a CAGR of 23% by 2030 : GreyViews
By Sources (Terahertz Sources, Detectors, and Terahertz), By End-User (Food & Agriculture, Healthcare, Defense & Security, and Others), Regions, Segmentation, and forecast till 2030.Pune India, Feb.
- Understanding laser-accelerated electron radiation through terahertz emissions
The terahertz (THz) gap, a frequency band lying between the microwave and infrared regions of the electromagnetic spectrum where conventional technologies are inefficient in generating and detecting ...
- Terahertz Technologies Market: Booming With Figures, New Business Opportunity Regional Insights and Forecast To 2028
Feb 07, 2023 (The Expresswire) -- "Final Report will add the analysis of the impact of COVID-19 on this industry." The Terahertz Technologies Market ...
- Global Terahertz and Infrared Spectroscopy Market Size, Share Covered Major Segments, Regions and Key Drivers Outlook 2023-2030-VMR
The Terahertz and Infrared Spectroscopy Market research report combines vital data incorporating the competitive landscape, global, regional, and country-specific market size, market growth analysis, ...
- Magnetic sandwich mediating between two worlds
Conveniently, the characteristic frequencies of the high-energy spin waves are in the terahertz range. This is exactly the target range for novel ultrafast technologies for data transmission and ...
Go deeper with Google Headlines on:
Terahertz technologies
[google_news title=”” keyword=”terahertz technologies” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Terahertz sources
- Terahertz Technology Market will surpass USD 2,226 million by 2030 at a CAGR of 23% by 2030 : GreyViews
By Sources (Terahertz Sources, Detectors, and Terahertz), By End-User (Food & Agriculture, Healthcare, Defense & Security, and Others), Regions, Segmentation, and forecast till 2030.Pune India, Feb.
- Understanding laser-accelerated electron radiation through terahertz emissions
The terahertz (THz) gap, a frequency band lying between the microwave and infrared regions of the electromagnetic spectrum where conventional technologies are inefficient in generating and detecting ...
- Terahertz Spectroscopic Systems Market 2023 Will Touch New Level in Upcoming Year
To know How COVID-19 and Russia-Ukraine War Influence Will Impact This Market/Industry - Request a sample copy of the report-: Moreover, the Terahertz Spectroscopic Systems Market Report includes ...
- Terahertz Spectroscopy Market Quantitative and Qualitative Analysis 2023 | Manufacturing Base, Sales Region, Competitors and Forecast to 2028
Feb 06, 2023 (The Expresswire) -- "Final Report will add the analysis of the impact of COVID-19 on this industry." Global “Terahertz Spectroscopy ...
- Medical Terahertz Technology Market is expected to increase at a CAGR 17.1% through 2032
According to a report published by FMI, the global medical terahertz technology market will be valued at US$ 135.29 Million in 2022. It is expected to grow at a CAGR of 17.1% during the forecast ...
Go deeper with Google Headlines on:
Terahertz sources
[google_news title=”” keyword=”terahertz sources” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]