
Nina Mahmoudian (center) and her students have developed an underwater glider that can operate silently and in confined spaces, ideal for conducting biology or climate studies without disturbing wildlife. (Purdue University photo/Jared Pike)
Autonomous underwater vehicles have become versatile tools for exploring the seas. But they can be disruptive to the environment or have trouble traveling through confined spaces.
Purdue University researchers are studying an alternative: highly maneuverable, low-cost underwater gliders that operate silently. Components and sensors of the glider also can be easily swapped out or added according to a wide range of mission specifications.
“Our goal is persistent operation of mobile robots in challenging environments,” said Nina Mahmoudian, associate professor of mechanical engineering. “Most underwater robots have limited battery life and must return back after just a few hours. For long-endurance operations, an underwater glider can travel for weeks or months between charges but could benefit from increased deployment opportunities in high-risk areas.”
An underwater glider differs from other marine robots because it has no propeller or active propulsion system. It changes its own buoyancy to sink down and rise up, and to propel itself forward. Although this up-and-down approach enables very energy-efficient vehicles, it presents several problems: The vehicles are expensive, slow and not maneuverable, especially in shallow water.
Mahmoudian has developed an agile vehicle called ROUGHIE (Research Oriented Underwater Glider for Hands on Investigative Engineering). Shaped like a torpedo, ROUGHIE is about four feet long and features no outward propulsion or control surfaces other than a static rear wing.

When deployed from shore or from a boat, ROUGHIE pumps water into its ballast tanks to change its buoyancy and provide initial glide path angle. To control its pitch, the vehicle’s battery subtly shifts its weight forward and backward, acting as its own control mechanism. To steer, the entire suite of inner components are mounted on a rail that rotates, precisely controlling the vehicle’s roll. The design is modular and adaptable for a variety of applications.
“This is a totally unique approach,” Mahmoudian said. “Most underwater gliders can only operate in deep oceans and are not agile for confined spaces. ROUGHIE has a turning radius of only about 10 feet, compared to an approximately 33-foot turn radius of other gliders.”
ROUGHIE is so maneuverable that Mahmoudian’s team has been testing it in the diving well at Purdue’s Morgan J. Burke Aquatic Center. By installing a motion capture system of infrared cameras below the water, they can track the vehicle’s movements and characterize its maneuvering behavior in three dimensions with millimeter accuracy.
“We program ROUGHIE with flight patterns ahead of time, and it performs those patterns autonomously,” Mahmoudian said. “It can do standard sawtooth up-and-down movements to travel in a straight line, but it can also travel in circular patterns or S-shaped patterns, which it would use when patrolling at sea. The fact that it can perform these tasks within the confined environment of a swimming pool using nothing but internal actuation is incredibly impressive.”
This maneuverability means that ROUGHIE is able to follow complex paths and can explore real-world areas other underwater gliders can’t.
“It can operate in shallow seas and coastal areas, which is so important for biology or climate studies,” Mahmoudian said. “And because it’s totally quiet, it won’t disturb wildlife or disrupt water currents like motorized vehicles do.”
ROUGHIE can be fitted with a variety of sensors, gathering temperature, pressure and conductivity data vital to oceanographers. Mahmoudian’s team has sent ROUGHIE into small ponds and lakes with a fluorimeter to measure algae bloom. The team also outfitted the vehicle with compact magnetometers, capable of detecting anomalies like shipwrecks and underwater munitions. This research has been published recently in the journal Sensors.
Mahmoudian and her students have been developing ROUGHIE since 2012 when she began the project at Michigan Technological University.
“My students designed and built it from scratch, and they developed the control and navigational algorithms in parallel,” Mahmoudian said. “For the price of a current commercial vehicle, we can put 10 of these in the water, monitoring conditions for months at a time. We believe this vehicle has great value to any local community.”
Original Article: Agile underwater glider could quietly survey the seas
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Underwater glider
- 2023 to 2030 Autonomous Underwater Glider Market Installation, Application and Type
Autonomous Underwater Glider Market” Are a Collection of Information and Analysis Obtained From Diverse Sources to ...
- Running A Glider With The PX4 Flight Controller
Despite this, [rctestflight] decided to run some experiments to see just how PX4 would fare when controlling a drone-launched shuttle glider. The glider is a simple design built from foam board ...
- NOC Scheduled for 31 Science Expeditions in 2023
The National Oceanography Center (NOC), home to RRS James Cook and RRS Discovery, is managing 31 global research missions in ...
- Tchia review: "Awaceb delivers a delightful, inventive adventure"
There were several occasions during my time with Tchia that I completely forgot I was sitting in my apartment, during what felt like a never-ending series of dreary, cold days. Instead, I was getting ...
- Sons Of The Forest – How to Get the Hang Glider
With its latest update, Sons Of The Forest introduces the Hang Glider, a nifty way to cover long distances quickly. It’s a much more time-efficient way to explore the mysteries and horrors ...
Go deeper with Google Headlines on:
Underwater glider
[google_news title=”” keyword=”underwater glider” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Autonomous underwater vehicles
- Autonomous Dozer Pairs Hard-Line, Polymath
Polymath Robotics and Hard-Line have partnered to on an autonomous crawler dozer, using Hard-Line’s remote operation technology and Polymath’s autonomous navigation system. Hard-Line’s hardware ...
- Knight Optical's Pumping up Productivity: How Robotics are Used in the Oil and Gas Industry
Knight Optical’s high-precision optical components find numerous applications in the oil and gas industry. As well as being used in robotics and automation in this field, optics are utilised in other ...
- Underwater Drone Market To Reach $15.4 Billion By 2031 With Rise In Deep-Water Offshore Oil And Gas Exploration
The global underwater drone market is growing at a CAGR of 15.9% from the forecast period 2022 to 2031 PORTLAND, OREGON, UNITED S ...
- Military Unmanned Underwater Vehicles (UUV) Market Know Faster Growing Segments | Saab, Atlas Elektronik, L3T
Military Unmanned Underwater Vehicles (UUV) Market. Stay up to date with Military Unmanned Underwater Vehicles (UUV) Market research offered by HTF MI. HTF ...
- Autonomous Underwater Vehicles Market Analysis by Application, by Technology, by Region, and Segment Forecasts, 2023 - 2030
The Final Report will analyze the impact of COVID-19 and Russia and Ukraine's war on this industry. "Autonomous ...
Go deeper with Google Headlines on:
Autonomous underwater vehicles
[google_news title=”” keyword=”autonomous underwater vehicles” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]