
Image showing individual and combined scans
Credit: Evis Sala
A new advanced computing technique using routine medical scans to enable doctors to take fewer, more accurate tumour biopsies, has been developed by cancer researchers at the University of Cambridge. This is an important step towards precision tissue sampling for cancer patients to help select the best treatment. In future the technique could even replace clinical biopsies with ‘virtual biopsies’, sparing patients invasive procedures.
This study provides an important milestone towards precision tissue sampling. We are truly pushing the boundaries in translating cutting edge research to routine clinical care
Evis Sala
The research published in European Radiology shows that combining computed tomography (CT) scans with ultrasound images creates a visual guide for doctors to ensure they sample the full complexity of a tumour with fewer targeted biopsies.
Capturing the patchwork of different types of cancer cell within a tumour – known as tumour heterogeneity – is critical for selecting the best treatment because genetically-different cells may respond differently to treatment.
Most cancer patients undergo one or several biopsies to confirm diagnosis and plan their treatment. But because this is an invasive clinical procedure, there is an urgent need to reduce the number of biopsies taken and to make sure biopsies accurately sample the genetically-different cells in the tumour, particularly for ovarian cancer patients.
High grade serous ovarian (HGSO) cancer, the most common type of ovarian cancer, is referred to as a ‘silent killer’ because early symptoms can be difficult to pick up. By the time the cancer is diagnosed, it is often at an advanced stage, and survival rates have not changed much over the last 20 years.
But late diagnosis isn’t the only problem. HGSO tumours tend to have a high level of tumour heterogeneity and patients with more genetically-different patches of cancer cells tend to have a poorer response to treatment.
Professor Evis Sala from the Department of Radiology, co-lead CRUK Cambridge Centre Advanced Cancer Imaging Programme, leads a multi-disciplinary team of radiologists, physicists, oncologists and computational scientists using innovative computing techniques to reveal tumour heterogeneity from standard medical images. This new study, led by Professor Sala, involved a small group of patients with advanced ovarian cancer who were due to have ultrasound-guided biopsies prior to starting chemotherapy.
For the study, the patients first had a standard-of-care CT scan. A CT scanner uses x-rays and computing to create a 3D image of the tumour from multiple image ‘slices’ through the body.
The researchers then used a process called radiomics – using high-powered computing methods to analyse and extract additional information from the data-rich images created by the CT scanner – to identify and map distinct areas and features of the tumour. The tumour map was then superimposed on the ultrasound image of the tumour and the combined image used to guide the biopsy procedure.
By taking targeted biopsies using this method, the research team reported that the diversity of cancer cells within the tumour was successfully captured.
Co-first author Dr Lucian Beer, from the Department of Radiology and CRUK Cambridge Centre Ovarian Cancer Programme, said of the results: “Our study is a step forward to non-invasively unravel tumour heterogeneity by using standard-of-care CT-based radiomic tumour habitats for ultrasound-guided targeted biopsies.”
Co-first author Paula Martin-Gonzalez, from the Cancer Research UK Cambridge Institute and CRUK Cambridge Centre Ovarian Cancer Programme, added: “We will now be applying this method in a larger clinical study.”
Professor Sala said: “This study provides an important milestone towards precision tissue sampling. We are truly pushing the boundaries in translating cutting edge research to routine clinical care.”
Fiona Barve (56) is a science teacher who lives near Cambridge. She was diagnosed with ovarian cancer in 2017 after visiting her doctor with abdominal pain. She was diagnosed with stage 4 ovarian cancer and immediately underwent surgery and a course of chemotherapy. Since March 2019 she has been cancer free and is now back to teaching three days a week.
“I was diagnosed at a late stage and I was fortunate my surgery, which I received within four weeks of being diagnosed, and chemotherapy worked for me. I feel lucky to be around,” said Barve.
“When you are first undergoing the diagnosis of cancer, you feel as if you are on a conveyor belt, every part of the journey being extremely stressful. This new enhanced technique will reduce the need for several procedures and allow patients more time to adjust to their circumstances. It will enable more accurate diagnosis with less invasion of the body and mind. This can only be seen as positive progress.”
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Virtual biopsies
- Circulating Tumor DNA Guiding Prostate Cancer Treatment Decisionson January 24, 2021 at 5:06 am
Pembrolizumab in mCRPC Patients with Microsatellite Instability High (MSI-H) Detected by Circulating Tumor DNA: Pedro Barata, MD, MSc: Joining Alicia Morgans is Pedro Barata, a co ...
- FDA Approves Seno Medical’s Ground-Breaking Breast Cancer Diagnostic Technologyon January 20, 2021 at 8:37 am
The Center for Devices and Radiological Health (CDRH) of the US Food & Drug Administration (FDA) has granted Texas-based Seno Medical Instruments, Inc. (Seno) premarket approval (PMA) for its ...
- Remaining ECHELON-2 Questions Spark Novel Research Efforts in PTCLon January 19, 2021 at 1:03 pm
Jakub Svoboda, MD, discusses the results of the ECHELON-2 trial and explained where clinical research is headed in peripheral T-cell lymphoma.
- Liquid biopsy test detected patients at risk for CRC relapseon January 19, 2021 at 6:33 am
A liquid biopsy test that detects circulating tumor DNA identified patients likely to redevelop colorectal cancer after having undergone surgery to remove tumors, Medpage Today reported Jan. 17.
- Liquid Biopsy Predicts Colon Cancer Relapse Months Before CTon January 17, 2021 at 2:05 pm
Detection of circulating tumor DNA (ctDNA) after surgery for colorectal cancer (CRC) identified patients with a high risk of relapse, which could be modified by adjuvant chemotherapy in some cases, ...
Go deeper with Google Headlines on:
Virtual biopsies
Go deeper with Bing News on:
Precision tissue sampling
- Grateful Donors Accelerate RA Research through Cytometry Gifton January 19, 2021 at 5:15 pm
The family received excellent medical care from physician-investigator Dr. Bob Kimberly, and they have been gratefully supporting UAB arthritis research ever since. According to Mary, “When Kayla ...
- InDevR Launches VaxArray Measles and Rubella Kit for Improved Vaccine Antigen Characterizationon January 19, 2021 at 5:00 am
InDevR, Inc., a life science tools company providing powerful analytical technologies to support the development and production of vaccines ...
- Overcoming the Challenges of Biomarker Testingon January 17, 2021 at 5:00 am
Comprehensive biomarker testing is not done routinely—yet. Now, solutions are emerging to help achieve this crucial piece of the precision medicine puzzle.
- Soft Tissue Repair Market 2019 Growth, COVID Impact, Trends Analysis Report 2025on January 15, 2021 at 12:54 am
The global soft tissue repair market is growing rapidly The increasing incidence of soft tissue injuries in the aging population is driving the market growth Soft tissue injuries are those injuries ...
- Lunaphore Announces Formation of New Scientific Advisory Boardon January 14, 2021 at 5:00 am
Lunaphore Technologies SA, a Swiss life-sciences company developing innovative next-generation equipment for cancer research, announces the formation ...