
Image showing individual and combined scans
Credit: Evis Sala
A new advanced computing technique using routine medical scans to enable doctors to take fewer, more accurate tumour biopsies, has been developed by cancer researchers at the University of Cambridge. This is an important step towards precision tissue sampling for cancer patients to help select the best treatment. In future the technique could even replace clinical biopsies with ‘virtual biopsies’, sparing patients invasive procedures.
This study provides an important milestone towards precision tissue sampling. We are truly pushing the boundaries in translating cutting edge research to routine clinical care
Evis Sala
The research published in European Radiology shows that combining computed tomography (CT) scans with ultrasound images creates a visual guide for doctors to ensure they sample the full complexity of a tumour with fewer targeted biopsies.
Capturing the patchwork of different types of cancer cell within a tumour – known as tumour heterogeneity – is critical for selecting the best treatment because genetically-different cells may respond differently to treatment.
Most cancer patients undergo one or several biopsies to confirm diagnosis and plan their treatment. But because this is an invasive clinical procedure, there is an urgent need to reduce the number of biopsies taken and to make sure biopsies accurately sample the genetically-different cells in the tumour, particularly for ovarian cancer patients.
High grade serous ovarian (HGSO) cancer, the most common type of ovarian cancer, is referred to as a ‘silent killer’ because early symptoms can be difficult to pick up. By the time the cancer is diagnosed, it is often at an advanced stage, and survival rates have not changed much over the last 20 years.
But late diagnosis isn’t the only problem. HGSO tumours tend to have a high level of tumour heterogeneity and patients with more genetically-different patches of cancer cells tend to have a poorer response to treatment.
Professor Evis Sala from the Department of Radiology, co-lead CRUK Cambridge Centre Advanced Cancer Imaging Programme, leads a multi-disciplinary team of radiologists, physicists, oncologists and computational scientists using innovative computing techniques to reveal tumour heterogeneity from standard medical images. This new study, led by Professor Sala, involved a small group of patients with advanced ovarian cancer who were due to have ultrasound-guided biopsies prior to starting chemotherapy.
For the study, the patients first had a standard-of-care CT scan. A CT scanner uses x-rays and computing to create a 3D image of the tumour from multiple image ‘slices’ through the body.
The researchers then used a process called radiomics – using high-powered computing methods to analyse and extract additional information from the data-rich images created by the CT scanner – to identify and map distinct areas and features of the tumour. The tumour map was then superimposed on the ultrasound image of the tumour and the combined image used to guide the biopsy procedure.
By taking targeted biopsies using this method, the research team reported that the diversity of cancer cells within the tumour was successfully captured.
Co-first author Dr Lucian Beer, from the Department of Radiology and CRUK Cambridge Centre Ovarian Cancer Programme, said of the results: “Our study is a step forward to non-invasively unravel tumour heterogeneity by using standard-of-care CT-based radiomic tumour habitats for ultrasound-guided targeted biopsies.”
Co-first author Paula Martin-Gonzalez, from the Cancer Research UK Cambridge Institute and CRUK Cambridge Centre Ovarian Cancer Programme, added: “We will now be applying this method in a larger clinical study.”
Professor Sala said: “This study provides an important milestone towards precision tissue sampling. We are truly pushing the boundaries in translating cutting edge research to routine clinical care.”
Fiona Barve (56) is a science teacher who lives near Cambridge. She was diagnosed with ovarian cancer in 2017 after visiting her doctor with abdominal pain. She was diagnosed with stage 4 ovarian cancer and immediately underwent surgery and a course of chemotherapy. Since March 2019 she has been cancer free and is now back to teaching three days a week.
“I was diagnosed at a late stage and I was fortunate my surgery, which I received within four weeks of being diagnosed, and chemotherapy worked for me. I feel lucky to be around,” said Barve.
“When you are first undergoing the diagnosis of cancer, you feel as if you are on a conveyor belt, every part of the journey being extremely stressful. This new enhanced technique will reduce the need for several procedures and allow patients more time to adjust to their circumstances. It will enable more accurate diagnosis with less invasion of the body and mind. This can only be seen as positive progress.”
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Virtual biopsies
- Industry Focus eBook: Breath Biopsy®: The Complete Guide
Breath Biopsy is the leading tool for robust breath analysis to support biomarker identification and validation. Owlstone Medical's complete guide of Breath Biopsy is free to download and contains ...
- Skin Biopsy Market Size, to Register an Unbelievable Revenue Growth Rate 2023 to 2031
The global Skin Biopsy industry report provides top-notch qualitative and quantitative information including: Market size (2017-2021 value and 2022 forecast). The report also contains descriptions of ...
- Why Second Medical Opinion and Virtual GP services can be life-saving, not just added value
By Tracey Ward, Head of Business Development & Marketing at Generali UK Employee Benefits The importance of so-called ‘added value services’ as part of group insurance products has been steadily ...
- Robotic-assisted technology enables McLeod Lung Team to detect cancer earlier
The comprehensive lung program at McLeod includes our lung cancer screening program, dedicated nurse navigators, a lung nodule clinic, patient conferences with multiple specialists and innovative ...
- Endometrial Biopsy Brush Market 2023: Growth Trends and Opportunities by 2027
Mar 26, 2023 (The Expresswire) -- "Final Report will add the analysis of the impact of COVID-19 on this industry." Latest “Endometrial Biopsy Brush ...
Go deeper with Google Headlines on:
Virtual biopsies
[google_news title=”” keyword=”virtual biopsies” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Precision tissue sampling
- Novel lymphoma tumor model paves way for new therapies
In recent years, innovative cancer drugs that target specific molecular drivers of the disease have been embraced as the treatment of choice for many types of cancer. But despite significant advances, ...
- Cell And Tissue Banking Market Share and Forecast till 2031
The "Cell And Tissue Banking Market" study describes how the technology industry is evolving and how major and ...
- Groundbreaking lymphoma tumor model paves way for new therapies
For each sample, they used RNA sequencing and imaging to identify the composition, stiffness, and mechanical properties of the tumor tissue, along with other ... thus helping to deliver on the promise ...
- Tissue Engineered Collagen Biomaterials Market by 2031
The "Tissue Engineered Collagen Biomaterials Market" study describes how the technology industry is evolving and how ...
- Lunaphore Expands Its COMET™ Portfolio to Become the First Universal, End-to-end Spatial Biology Solution
New products will accelerate the adoption and scalability of groundbreaking translational and clinical research Lunaphore, a Swiss life sciences company developing technology to enable spatial biology ...
Go deeper with Google Headlines on:
Precision tissue sampling
[google_news title=”” keyword=”precision tissue sampling” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]