The new crystal form of deltamethrin (right), created by heating and cooling the original form (left), is up to 12 times more effective against mosquitoes. Image credit: Jingxiang Yang
Researchers use a simple, inexpensive technique to develop a new fast-acting form of deltamethrin that may help with growing insecticide resistance
Through a simple process of heating and cooling, New York University researchers have created a new crystal form of deltamethrin—a common insecticide used to control malaria—resulting in an insecticide that is up to 12 times more effective against mosquitoes than the existing form.
The findings, published in the journal Proceedings of the National Academy of Sciences (PNAS), may provide a much-needed and affordable insecticide alternative in the face of growing resistance among mosquitoes.
“The use of more active crystal forms of insecticides is a simple and powerful strategy for improving commercially available compounds for malaria control, circumventing the need for developing new products in the ongoing fight against mosquito-borne diseases,” said Bart Kahr, professor of chemistry at NYU and one of the study’s senior authors.
“Improvements in malaria control are needed as urgently as ever during the global COVID-19 crisis,” added Kahr. “The number of deaths from malaria in Africa this year is projected to double as a result of coronavirus-related disruptions to supply chains. We need public health measures to curtail both infectious diseases, and for malaria, this includes more effective insecticides.”
Malaria is a major public health challenge worldwide, with more than 200 million cases and 400,000 deaths reported each year. Insecticides such as deltamethrin can prevent the spread of diseases carried by mosquitoes and are often sprayed indoors and on bed nets. However, mosquitoes are increasingly becoming resistant to insecticides, leaving researchers and public health officials searching for alternatives with new modes of action.
Many insecticides, including deltamethrin, are in the form of crystals—the research focus for Kahr and fellow NYU chemistry professor Michael Ward. When mosquitoes step on insecticide crystals, the insecticide is absorbed through their feet and, if effective, kills the mosquitoes.
As part of their research on crystal formation and growth, Kahr and Ward study and manipulate insecticide crystals, exploring their alternative forms. In their PNAS study, the researchers heated the commercially available form of deltamethrin to 110°C/230°F for a few minutes and let it cool to room temperature; this resulted in a new crystallized form of deltamethrin, composed of long, tiny fibers radiating from a single point.
When tested on Anopheles quadrimaculatus and Aedes aegypti mosquitoes—both of which transmit malaria—and fruit flies, the new crystal form of deltamethrin worked up to 12 times faster than the existing form. Fast-acting insecticides are important for quickly controlling mosquitoes before they reproduce or continue spreading diseases.
The new form also remained stable—and able to rapidly kill mosquitoes—for at least three months.
To simulate how the two forms of deltamethrin would perform in stemming the spread of malaria, the researchers turned to epidemiological modeling that suggests that using the new form in indoor spraying in place of the original form would significantly suppress malaria transmission, even in regions with high levels of insecticide resistance. Moreover, less of the new form would need to be used to achieve the same effect, potentially lowering the cost of mosquito control programs and reducing environmental exposure to the insecticide.
“Deltamethrin has been a leading tool in combating malaria, but it faces an uncertain future, threatened by developing insecticide resistance. The simple preparation of this new crystal form of deltamethrin, coupled with its stability and markedly greater efficacy, shows us that the new form can serve as a powerful and affordable tool for controlling malaria and other mosquito-borne diseases,” said Ward.
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Insecticide resistance
- On World Malaria Day, We Must Step Up Efforts to Combat Malariaon April 22, 2021 at 11:11 pm
New tools, such as those being developed by Unitaid and partners, are needed in the face of emerging insecticide and drug resistance. These can only be developed with sustained and significant ...
- Vestaron Announces New Sustainability Commitmenton April 22, 2021 at 10:46 am
Vestaron, a leader in the evolution of agricultural environmental science, is solidifying their commitment to sustainability through the launch of a new multi-faceted sustainability platform, ...
- World Malaria Day 2021: Finding new approaches to fight malariaon April 22, 2021 at 2:30 am
In observation of World Malaria Day, News-Medical interviews renowned malaria expert Professor Maureen Coetzee about the fight against malaria.
- Grandmother’s Exposure to Banned Pesticide DDT Increases Breast Cancer and Cardiometabolic Disorder Risk in Granddaughterson April 21, 2021 at 9:01 pm
Past maternal exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) during pregnancy can increase the risk of breast cancer and cardiometabolic disorders (e.g., heart disease, obesity, ...
- Insect youths give in to parasitic mumon April 21, 2021 at 9:18 am
Adult children concede to exploitative mums leading to the evolution of insect societies, new research led by the University of St Andrews has found.
Go deeper with Google Headlines on:
Insecticide resistance
Go deeper with Bing News on:
Malaria
- World's most effective malaria vaccine developed in UKon April 23, 2021 at 12:28 am
The world's most effective malaria vaccine has been developed by scientists in the UK. Researchers from the University of Oxford and their partners reported their Phase IIb trial of a candidate ...
- New Oxford vaccine 77% effective against malaria, trial results showon April 23, 2021 at 12:01 am
A malaria vaccine developed by the same team behind the Oxford coronavirus jab has been found to be 77 per cent effective in providing protection against the mosquito-borne disease, in what is a major ...
- Urukingo rushya rwa Malaria ‘rurakora kuri 77%’on April 22, 2021 at 11:51 pm
Urukingo rumwe ruriho rwa malaria rumaze guterwa abana mu bihugu birimo Kenya, Ghana na Malawi Igerageza ry'ibanze ry'urukingo rushya rwa Malaria rwakozwe na kaminuza ya Oxford rirerekana ko rukora ku ...
- Malaria vaccine made by creators of Oxford Covid jab is 77 per cent effective in trialon April 22, 2021 at 11:43 pm
esearchers in Britain have developed the world’s most effective malaria vaccine, with it becoming the first to achieve the World Health Organisation-specified 75 per cent efficacy goal. Researchers ...
- Researchers develop world’s most effective malaria vaccineon April 22, 2021 at 11:33 pm
Researchers in Britain have developed the world’s most effective malaria vaccine, with it becoming the first to achieve the World Health Organisation-specified 75 per cent efficacy goal. Researchers ...