New anode material could lead to safer fast-charging batteries
Scientists at UC San Diego have discovered a new anode material that enables lithium-ion batteries to be safely recharged within minutes for thousands of cycles. Known as a disordered rocksalt, the new anode is made up of earth-abundant lithium, vanadium and oxygen atoms arranged in a similar way as ordinary kitchen table salt, but randomly. It is promising for commercial applications where both high energy density and high power are desired, such as electric cars, vacuum cleaners or drills.
The study, jointly led by nanoengineers in the labs of Professors Ping Liu and Shyue Ping Ong, was published in Nature on September 2.
Currently, two materials are used as anodes in most commercially available lithium-ion batteries that power items like cell phones, laptops and electric vehicles. The most common, a graphite anode, is extremely energy dense—a lithium ion battery with a graphite anode can power a car for hundreds of miles without needing to be recharged. However, recharging a graphite anode too quickly can result in fire and explosions due to a process called lithium metal plating. A safer alternative, the lithium titanate anode, can be recharged rapidly but results in a significant decrease in energy density, which means the battery needs to be recharged more frequently.
This new disordered rocksalt anode—Li3V2O5 —sits in an important middle ground: it is safer to use than graphite, yet offers a battery with at least 71% more energy than lithium titanate.
“The capacity and energy will be a little bit lower than graphite, but it’s faster, safer and has a longer life. It has a much lower voltage and therefore much improved energy density over current commercialized fast charging lithium-titanate anodes,” said Haodong Liu, a postdoctoral scholar in Professor Ping Liu’s lab and first author of the paper. “So with this material we can make fast-charging, safe batteries with a long life, without sacrificing too much energy density.”
The researchers formed a company called Tyfast in order to commercialize this discovery. The startup’s first markets will be electric buses and power tools, since the characteristics of the Li3V2O5 disordered rocksalt make it ideal for use in devices where recharging can be easily scheduled.
Researchers in Professor Liu’s lab plan to continue developing this lithium-vanadium oxide anode material, while also optimizing other battery components to develop a commercially viable full cell.
“For a long time, the battery community has been looking for an anode material operating at a potential just above graphite to enable safe, fast charging lithium-ion batteries. This material fills an important knowledge and application gap,” said Ping Liu. “We are excited for its commercial potential since the material can be a drop-in solution for today’s lithium-ion battery manufacturing process.”
Why try this material?
Researchers first experimented with disordered rocksalt as a battery cathode six years ago. Since then, much work has been done to turn the material into an efficient cathode. Haodong Liu said the UC San Diego team decided to test the material as an anode based on a hunch.
“When people use it as a cathode they have to discharge the material to 1.5 volts,” he said. “But when we looked at the structure of the cathode material at 1.5 volts, we thought this material has a special structure that may be able to host more lithium ions—that means it can go to even lower voltage to work as an anode.”
In the study, the team found that their disordered rocksalt anode could reversibly cycle two lithium ions at an average voltage of 0.6 V—higher than the 0.1 V of graphite, eliminating lithium metal plating at a high charge rate which makes the battery safer, but lower than the 1.5 V at which lithium-titanate intercalates lithium, and therefore storing much more energy.
The researchers showed that the Li3V2O5 anode can be cycled for over 6,000 cycles with negligible capacity decay, and can charge and discharge energy rapidly, delivering over 40 percent of its capacity in 20 seconds. The low voltage and high rate of energy transfer are due to a unique redistributive lithium intercalation mechanism with low energy barriers.
Postdoctoral scholar Zhuoying Zhu, from Professor Shyue Ping Ong’s Materials Virtual Lab, performed theoretical calculations to understand why the disordered rocksalt Li3V2O5 anode works as well as it does.
“We discovered that Li3V2O5 operates via a charging mechanism that is different from other electrode materials. The lithium ions rearrange themselves in a way that results in both low voltage as well as fast lithium diffusion,” said Zhuoying Zhu.
“We believe there are other electrode materials waiting to be discovered that operate on a similar mechanism,” added Ong.
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Anode material
- Ecograf’s battery anode material facility wins major project statuson March 4, 2021 at 7:33 pm
The timing could not be any neater for EcoGraf (ASX:EGR) to receive Major Project Status for its planned battery anode ... Read More The post Ecograf’s battery anode material facility wins major ...
- Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batterieson March 4, 2021 at 9:23 am
Anode-free lithium metal battery is one of the most promising candidates for next-generation high energy density battery but suffer from poor cycle life. Here the authors present an integrated ...
- Anode Grade Material of Lithium Ion Battery Market with Key Players, Applications, Trends and Forecasts to 2026on March 4, 2021 at 5:07 am
Selbyville, Delaware, According to this latest study, the 2020 growth of Anode Grade Material of Lithium Ion Battery will have significant change from previous year. By the most conservative estimates ...
- EcoGraf making big strides towards construction and operations at its battery anode materials planton March 2, 2021 at 11:01 pm
EcoGraf Limited's (ASX:EGR) Andrew Spinks speaks to Proactive's Andrew Scott soon after its successful capital raising of $54.5 million to a number of significant institutional investors. He says the ...
- Solvent engineered synthesis of layered SnO for high-performance anodeson March 2, 2021 at 4:00 pm
Lithium and sodium ion batteries account for a significant portion of the battery market, but high-performance electrochemically active materials still need to be discovered and optimized for these ...
Go deeper with Google Headlines on:
Anode material
Go deeper with Bing News on:
Disordered rocksalt
- Serial Entrepreneur Hector Sosa Flores Discusses Essential Workers in New Featureon March 1, 2021 at 9:25 am
Hector Sosa Flores is the CEO and founder of Axios Group, LLC, a focus commodity company that buys and sells wholesale food products and precious metals, including soybeans, wine, rock salt ...
- Homemade Peach Ice Creamon February 28, 2021 at 4:00 pm
Pack freezer with additional ice and rock salt, and let stand at least 1 hour before serving. What did you think about this recipe? Did you make any changes or notes?
- New Anode Allows for Safe Battery Recharge in Minuteson February 28, 2021 at 4:00 pm
The material is a disordered rock salt, which is comprised of earth-abundant lithium, vanadium, and oxygen atoms—arranged in a similar way as ordinary kitchen table salt, but at the same time, ...
- Can certain foods help in managing autoimmune disorders?on February 23, 2021 at 5:00 am
Senior Ayurvedic Consultant Dr Vishakha Mahindroo Bahri, who has been treating autoimmune disorder in patients ... Spices – Rock salt, turmeric, cumin, coriander, ginger(dry), khand (shakkar ...
- High-entropy-stabilized chalcogenides with high thermoelectric performanceon February 18, 2021 at 12:15 pm
By increasing the number of elements in the alloy, the resulting disorder helps to stabilize against breakdown into multiple phases. The disordered and distorted crystal lattice suppresses thermal ...