
A flow-diagram outlining the interconnections of the model
Respiratory droplets from a cough or sneeze travel farther and last longer in humid, cold climates than in hot, dry ones, according to a study on droplet physics by an international team of engineers.
The researchers incorporated this understanding of the impact of environmental factors on droplet spread into a new mathematical model that can be used to predict the early spread of respiratory viruses including COVID-19, and the role of respiratory droplets in that spread.
The team developed this new model to better understand the role that droplet clouds play in the spread of respiratory viruses. Their model is the first to be based on a fundamental approach taken to study chemical reactions called collision rate theory, which looks at the interaction and collision rates of a droplet cloud exhaled by an infected person with healthy people. Their work connects population-scale human interaction with their micro-scale droplet physics results on how far and fast droplets spread, and how long they last.
Their results were published June 30 in the journal Physics of Fluids.
“The basic fundamental form of a chemical reaction is two molecules are colliding. How frequently they’re colliding will give you how fast the reaction progresses,” said Abhishek Saha, a professor of mechanical engineering at the University of California San Diego, and one of the authors of the paper. “It’s exactly the same here; how frequently healthy people are coming in contact with an infected droplet cloud can be a measure of how fast the disease can spread.”
They found that, depending on weather conditions, some respiratory droplets travel between 8 feet and 13 feet away from their source before evaporating, without even accounting for wind. This means that without masks, six feet of social distance may not be enough to keep one person’s exhalated particles from reaching someone else.
“Droplet physics are significantly dependent on weather,” said Saha. “If you’re in a colder, humid climate, droplets from a sneeze or cough are going to last longer and spread farther than if you’re in a hot dry climate, where they’ll get evaporated faster. We incorporated these parameters into our model of infection spread; they aren’t included in existing models as far as we can tell.”
The researchers hope that their more detailed model for rate of infection spread and droplet spread will help inform public health policies at a more local level, and can be used in the future to better understand the role of environmental factors in virus spread.
They found that at 35C (95F) and 40 percent relative humidity, a droplet can travel about 8 feet. However, at 5C (41F) and 80 percent humidity, a droplet can travel up to 12 feet. The team also found that droplets in the range of 14-48 microns possess higher risk as they take longer to evaporate and travel greater distances. Smaller droplets, on the other hand, evaporate within a fraction of a second, while droplets larger than 100 microns quickly settle to the ground due to weight.
This is further evidence of the importance of wearing masks, which would trap particles in this critical range.
The team of engineers from the UC San Diego Jacobs School of Engineering, University of Toronto and Indian Institute of Science are all experts in the aerodynamics and physics of droplets for applications including propulsion systems, combustion or thermal sprays. They turned their attention and expertise to droplets released when people sneeze, cough or talk when it became clear that COVID-19 is spread through these respiratory droplets. They applied existing models for chemical reactions and physics principles to droplets of a salt water solution—saliva is high in sodium chloride—which they studied in an ultrasonic levitator to determine the size, spread, and lifespan of these particles in various environmental conditions.
Many current pandemic models use fitting parameters to be able to apply the data to an entire population. The new model aims to change that.
“Our model is completely based on “first principles” by connecting physical laws that are well understood, so there is next to no fitting involved,” said Swetaprovo Chaudhuri, professor at University of Toronto and a co-author. “Of course, we make idealized assumptions, and there are variabilities in some parameters, but as we improve each of the submodels with specific experiments and including the present best practices in epidemiology, maybe a first principles pandemic model with high predictive capability could be possible.”
There are limitations to this new model, but the team is already working to increase the model’s versatility.
“Our next step is to relax a few simplifications and to generalize the model by including different modes of transmission,” said Saptarshi Basu, professor at the Indian Institute of Science and a co-author. “A set of experiments are also underway to investigate the respiratory droplets that settle on commonly touched surfaces.”
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Respiratory droplet spread
- Respiratory illnesses in kids on rise: Common causes and preventive measures
A surge in respiratory diseases has been observed in kids. Experts say factors like allergens, inactive lifestyle to spread of viruses could be behind it. The spread of viruses like RSV and ...
- H9N2’s high mutability poses challenges in predicting and controlling the virus
Known as the H9N2 virus – it primarily affects birds, particularly poultry. The virus is a subtype of the influenza A virus and has been identified in various avian species globally, informs Dr Aniket ...
- A respiratory illness is spreading among dogs across the country
To help stop the spread of this respiratory infection, and prevent as many dogs as possible from contracting it, pet owners are encouraged to minimize their pet’s interactions with other dogs.
- Protected droplets a new transport route for medicines
Microgels form a thin protective shell around a droplet until the temperature rises above 32 degrees. Then the microgels shrink and the droplet dissolves in the surrounding liquid. A study now reveals ...
- Gaza’s next tragedy: Disease risk spreads amid overcrowded shelters, dirty water and breakdown of basic sanitation
High levels of diarrhea, scabies and respiratory infections have been reported as bombing campaign progresses – and children are the most vulnerable.
Go deeper with Google Headlines on:
Respiratory droplet spread
[google_news title=”” keyword=”respiratory droplet spread” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Respiratory droplets
- My son was minutes from permanent brain damage after being struck by pneumonia amid outbreaks in UK, US and China
A TERRIFIED mum has shared how her son’s ‘little cough’ turned out to be the same pneumonia infection sweeping through China, the US and now the UK. William McCarren, 14, was ...
- Critical Alert: Rise in Respiratory Illnesses Triggers Worldwide Concern
Seasonal flu, a communicable disease transmitted through respiratory droplets, manifests with symptoms including fever, chills, malaise, loss of appetite, myalgia, nausea, sneezing, and a dry cough.
- RSV in winter 2023: Everything you need to know about symptoms, treatments, shots
As the United States heads into the colder weather months, cases of respiratory syncytial virus (RSV) have been ticking up across the country. For the week ending Nov. 25, there were 8,863 positive ...
- What to know about mysterious dog respiratory illness
A mysterious illness infecting dogs all across the United States has spread to the DMV. The American Veterinary Medical Association tells DC News Now the first case of the mysterious illness has been ...
- Differentiating between Bacterial and Viral Pneumonia: Treatment and management
Cover your mouth and nose with a tissue or handkerchief while coughing or sneezing to prevent the spread of respiratory droplets that may contain infectious agents. 4. Avoid Smoking: Smoking damages ...
Go deeper with Google Headlines on:
Respiratory droplets
[google_news title=”” keyword=”respiratory droplets” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]