
Researchers at Tufts University’s School of Engineering have developed biomaterial-based inks that respond to and quantify chemicals released from the body (e.g. in sweat and potentially other biofluids) or in the surrounding environment by changing color.
The inks can be screen printed onto textiles such as clothes, shoes, or even face masks in complex patterns and at high resolution, providing a detailed map of human response or exposure. The advance in wearable sensing, reported in Advanced Materials and described in this video*, could simultaneously detect and quantify a wide range of biological conditions, molecules and, possibly, pathogens over the surface of the body using conventional garments and uniforms.
“The use of novel bioactive inks with the very common method of screen printing opens up promising opportunities for the mass-production of soft, wearable fabrics with large numbers of sensors that could be applied to detect a range of conditions,” said Fiorenzo Omenetto, corresponding author and the Frank C. Doble Professor of Engineering at Tufts’ School of Engineering. “The fabrics can end up in uniforms for the workplace, sports clothing, or even on furniture and architectural structures.”
Wearable sensing devices have attracted considerable interest in monitoring human performance and health. Many such devices have been invented incorporating electronics in wearable patches, wristbands, and other configurations that monitor either localized or overall physiological information such as heart rate or blood glucose. The research presented by the Tufts team takes a different, complementary approach – non-electronic, colorimetric detection of a theoretically very large number of analytes using sensing garments that can be distributed to cover very large areas: anything from a patch to the entire body, and beyond.
The components that make the sensing garments possible are biologically activated silk-based inks. The soluble silk substrate in these ink formulations can be modified by embedding various “reporter” molecules – such as pH sensitive indicators, or enzymes like lactate oxidase to indicate levels of lactate in sweat. The former could be an indicator of skin health or dehydration, while the latter could indicate levels of fatigue of the wearer. Many other derivatives of the inks can be created due to the versatility of the silk fibroin protein by modifying it with active molecules such as chemically sensitive dyes, enzymes, antibodies and more. While the reporter molecules could be unstable on their own, they can become shelf-stable when embedded within the silk fibroin in the ink formulation.
The inks are formulated for screen printing applications by combining with a thickener (sodium alginate) and a plasticizer (glycerol). The screen printable bio-inks can be used like any ink developed for screen printing, and so can be applied not just to clothing but also to various surfaces such as wood, plastics and paper to generate patterns ranging from hundreds of microns to tens of meters. While the changes in color presented by the inks can provide a visual cue to the presence or absence of an analyte, use of camera imaging analysis scanning the garments or other material can gather more precise information on both quantity and high resolution, sub-millimeter mapping.
The technology builds upon earlier work by the same researchers developing bioactive silk inks formulated for inkjet-printing to create petri dishes, paper sensors, and laboratory gloves that can indicate bacterial contamination by changing colors.
“The screen printing approach provides the equivalent of having a large, multiplexed arrangement of sensors covering extensive areas of the body, if worn as a garment, or even on large surfaces such as room interiors,” said Giusy Matzeu, research assistant professor of biomedical engineering at Tufts School of Engineering and first author of the paper. “Coupled with image analysis, we can obtain a high resolution map of color reactions over a large area and gain more insight on overall physiological or environmental state. In theory, we could extend this method to track air quality, or support environmental monitoring for epidemiology.”
The fact that the method uses common printing techniques also opens up avenues in creative applications – something explored by Laia Mogas-Soldevila, architect and recent PhD graduate at Tufts in Omenetto’s SilkLab. Mogas-Soldevila has helped to create beautiful tapestries, displaying them in museums across the United States and Europe. The displays are interactive, allowing visitors to spray different, non-toxic chemicals onto the fabric and watch the patterns transform. “This is really a great example of how art and engineering can gain from and inspire each other,” said Mogas-Soldevila. “The engineered inks open up a new dimension in responsive, interactive tapestries and surfaces, while the 1,000-year old art of screen printing has provided a foundation well suited to the need for a modern high resolution, wearable sensing surface.”
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Smart fabrics
- Indian Sports Textiles Set To Soar, Says Mos Textiles
Indian Sports Textiles Set to Soar, says MoS Textiles New Delhi, June 3 (KNN) Darshana Vikram Jardosh, Minister of Stat ...
- Textiles and Clothing News
Cheaper Method for Making Woven Displays and Smart Fabrics -- Of Any Size or Shape Apr. 21, 2023 — Researchers have developed next-generation smart textiles -- incorporating LEDs, sensors ...
- Speaker Grill Fabrics Market to Hit USD 109.20 Million By 2030, Says Consegic Business Intelligence
According to a recent report by Consegic Business Intelligence, the speaker grill fabrics market is poised for strong expansion and is expected to reach USD 109.20 million by 2030. The market, which ...
- Researchers test heat-reactiveness of fabric
At Aalto University in Finland, researchers have developed textiles that change shape when they heat up, thanks to weaving in liquid crystalline elastomers (LCEs). The work was done in collaboration ...
- ‘Resilient planning major component of smart cities’
Smart cities go beyond the adoption of technology and digital transformation, but also involves smart, resilient strategies implemented ...
Go deeper with Google Headlines on:
Smart fabrics
[google_news title=”” keyword=”smart fabrics” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Bio-active inks
- High-tech pen paints healing gel right into wounds
Most wound dressings simply cover the injury and perhaps also kill harmful bacteria. The PAINT system goes much further, as it incorporates a pen that could one day allow doctors to paint a gelatinous ...
- PAINTing a wound-healing ink into cuts with a 3D-printing pen
The body is pretty good at healing itself, though more severe wounds can require bandages or stitches. But researchers publishing in ACS Applied Materials & Interfaces have developed a wound-healing ...
- BioLight Inks Agreement With Alexion To Explore Technology For Diagnosis Of Retinal Diseases
(RTTNews) - BioLight Life Sciences Ltd. announced Tuesday it has signed a research collaboration agreement with Alexion Pharmaceuticals, Inc. (ALXN), a subsidiary of AstraZeneca plc (AZN, AZN.L ...
- BioLight Inks Agreement With Alexion To Explore Technology For Diagnosis Of Retinal Diseases
(RTTNews) - BioLight Life Sciences Ltd. announced Tuesday it has signed a research collaboration agreement with Alexion Pharmaceuticals, Inc. (ALXN), a subsidiary of AstraZeneca plc (AZN, AZN.L ...
- J&J Inks Bioprinting Deal with Korea’s T&R Biofab
T&R’s proprietary system can print biomaterials, including its hydrogel tissue–derived bio ink, synthetic and biodegradable polymers, and ceramics. The company says that it has the core technology to ...
Go deeper with Google Headlines on:
Bio-active inks
[google_news title=”” keyword=”bio-active inks” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]