
Left: mouse astrocytes (green) before reprogramming; Right: neurons (red) induced from mouse astrocytes after reprogramming with PTB antisense oligonucleotide treatment.
CREDIT
UC San Diego Health Sciences
Inhibiting a single gene converts many cell types directly into dopamine-producing neurons
Xiang-Dong Fu, PhD, has never been more excited about something in his entire career. He has long studied the basic biology of RNA, a genetic cousin of DNA, and the proteins that bind it. But a single discovery has launched Fu into a completely new field: neuroscience.
For decades, Fu and his team at University of California San Diego School of Medicine studied a protein called PTB, which is well known for binding RNA and influencing which genes are turned “on” or “off” in a cell. To study the role of a protein like PTB, scientists often manipulate cells to reduce the amount of that protein, and then watch to see what happens.
Several years ago, a postdoctoral researcher working in Fu’s lab was taking that approach, using a technique called siRNA to silence the PTB gene in connective tissue cells known as fibroblasts. But it’s a tedious process that needs to be performed over and over. He got tired of it and convinced Fu they should use a different technique to create a stable cell line that’s permanently lacking PTB. At first, the postdoc complained about that too, because it made the cells grow so slowly.
But then he noticed something odd after a couple of weeks — there were very few fibroblasts left. Almost the whole dish was instead filled with neurons.
In this serendipitous way, the team discovered that inhibiting or deleting just a single gene, the gene that encodes PTB, transforms several types of mouse cells directly into neurons.
More recently, Fu and Hao Qian, PhD, another postdoctoral researcher in his lab, took the finding a big step forward, applying it in what could one day be a new therapeutic approach for Parkinson’s disease and other neurodegenerative diseases. Just a single treatment to inhibit PTB in mice converted native astrocytes, star-shaped support cells of the brain, into neurons that produce the neurotransmitter dopamine. As a result, the mice’s Parkinson’s disease symptoms disappeared.
The study is published June 24, 2020 in Nature.
“Researchers around the world have tried many ways to generate neurons in the lab, using stem cells and other means, so we can study them better, as well as to use them to replace lost neurons in neurodegenerative diseases,” said Fu, who is a Distinguished Professor in the Department of Cellular and Molecular Medicine at UC San Diego School of Medicine. “The fact that we could produce so many neurons in such a relatively easy way came as a big surprise.”
There are several different ways to mimic Parkinson’s disease in mice. In this case, the researchers applied a dopamine look-a-like molecule to poison neurons that produce dopamine. As a result, the mice lose dopamine-producing neurons and develop symptoms similar to Parkinson’s disease, such as movement deficiencies.
The treatment works like this: The researchers developed a noninfectious virus that carries an antisense oligonucleotide sequence — an artificial piece of DNA designed to specifically bind the RNA coding for PTB, thus degrading it, preventing it from being translated into a functional protein and stimulating neuron development.
Antisense oligonucleotides, also known as designer DNA drugs, are a proven approach for neurodegenerative and neuromuscular diseases — study co-author, Don Cleveland, PhD, pioneered the technology, and it now forms the basis for a Food and Drug Administration (FDA)-approved therapy for spinal muscular atrophy and several other therapies currently in clinical trials. Cleveland is chair of the Department of Cellular and Molecular Medicine at UC San Diego School of Medicine and member of the Ludwig Institute for Cancer Research, San Diego.
The researchers administered the PTB antisense oligonucleotide treatment directly to the mouse’s midbrain, which is responsible for regulating motor control and reward behaviors, and the part of the brain that typically loses dopamine-producing neurons in Parkinson’s disease. A control group of mice received mock treatment with an empty virus or an irrelevant antisense sequence.
In the treated mice, a small subset of astrocytes converted to neurons, increasing the number of neurons by approximately 30 percent. Dopamine levels were restored to a level comparable to that in normal mice. What’s more, the neurons grew and sent their processes into other parts of brain. There was no change in the control mice.
By two different measures of limb movement and response, the treated mice returned to normal within three months after a single treatment, and remained completely free from symptoms of Parkinson’s disease for the rest of their lives. In contrast, the control mice showed no improvement.
“I was stunned at what I saw,” said study co-author William Mobley, MD, PhD, Distinguished Professor of Neurosciences at UC San Diego School of Medicine. “This whole new strategy for treating neurodegeneration gives hope that it may be possible to help even those with advanced disease.”
What is it about PTB that makes this work? “This protein is present in a lot of cells,” Fu said. “But as neurons begin to develop from their precursors, it naturally disappears. What we’ve found is that forcing PTB to go away is the only signal a cell needs to turn on the genes needed to produce a neuron.”
Of course, mice aren’t people, he cautioned. The model the team used doesn’t perfectly recapitulate all essential features of Parkinson’s disease. But the study provides a proof of concept, Fu said.
Next, the team plans to optimize their methods and test the approach in mouse models that mimic Parkinson’s disease through genetic changes. They have also patented the PTB antisense oligonucleotide treatment in order to move forward toward testing in humans.
“It’s my dream to see this through to clinical trials, to test this approach as a treatment for Parkinson’s disease, but also many other diseases where neurons are lost, such as Alzheimer’s and Huntington’s diseases and stroke,” Fu said. “And dreaming even bigger — what if we could target PTB to correct defects in other parts of the brain, to treat things like inherited brain defects?
“I intend to spend the rest of my career answering these questions.”
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Parkinson’s
- Too young for Parkinson’s? What it’s like being diagnosed in your 30s and 40s
Since being diagnosed with early-onset Parkinson’s, a lot has changed for Kuhan. The former project manager from south-west London was 38 when diagnosed with the condition – where parts of the brain ...
- ANAVEX®2-73 (Blarcamesine) Shows Clinical Benefit in Long-Term 48-Week Phase 2 Extension Study in Patients with Parkinson’s Disease Dementia
Study successfully achieved both primary and secondary objectives. ANAVEX®2-73 treatment resulted in improvements of all efficacy endpoints over 48 Weeks. Anavex plans to proceed ...
- Do B Vitamins Reduce Parkinson's Risk?
Increasing intake of folate and vitamin B6 beyond recommended daily levels offers no protective benefit against Parkinson's disease (PD), a new study shows. Though there was some evidence that vitamin ...
- C. Krueger's teaming with Michael J. Fox Foundation after founder's Parkinson's diagnosis
It’s personal. Cheryl Krueger, the longtime Central Ohio business figure and founder and CEO emeritus of the baked goods retailer, Wednesday announced she has been diagnosed with Parkinson’s disease, ...
- Parkinson's disease symptoms disappeared with exercise, man claims: ‘Use it or lose it’
Multiple studies have shown exercise can alleviate symptoms and slow the progression of Parkinson's disease. Scott Hanley, 57, is using fitness to fight back — as are others.
Go deeper with Google Headlines on:
Parkinson’s
[google_news title=”” keyword=”Parkinson’s” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Designer DNA drugs
- DNA-Encoded Library Market | Global Various Tendencies Industry Report 2029
Development and DNA-encoded Library Service Kits, Hit optimization / Validation, Custom library design / Synthesis, In-house Drug), Deep Dive, disruption, application [, Pharmaceutical and Biotech ...
- Antisense therapies: A new approach to tackling challenging targets in areas of high unmet medical need
Alexander Gebauer from Secarna Pharmaceuticals GmbH & Co. KG looks at a new approach to solve unmet medical needs with antisense therapies ...
- DNA-Encoded Library Market Size and Forecast till 2030
Newest Report will contain the Competitional Analysis of Top 5 Key Plyers (Merck KGaA, GlaxoSmithKline plc, Amgen ...
- Insilico Medicine featured in BBC-produced series on biotech breakthroughs
Pharma.AI can process and analyze massive quantities of data to identify new targets for drugs, design new drug-like molecules ... Other topics explored in the series include gene editing, synthetic ...
- MDA 2023: Designer DNA drug for ALS shows promise in mouse studies
A new designer DNA therapy that aims to restore stathmin-2 protein levels in ALS has shown promise in early mouse studies.
Go deeper with Google Headlines on:
Designer DNA drugs
[google_news title=”” keyword=”designer DNA drugs” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]