via TAU
Technique combines ultrasound application and tumor-targeted microbubbles that attach to cancer cells and explode
An international research team led by Dr. Tali Ilovitsh of the Biomedical Engineering Department at TAU developed a noninvasive technology platform for gene delivery into breast cancer cells. The technique combines ultrasound with tumor-targeted microbubbles. Once the ultrasound is activated, the microbubbles explode like smart and targeted warheads, creating holes in cancer cells’ membranes, enabling gene delivery. Conducted over two years, the research was published on June 9 in the journal Proceedings of the National Academy of Sciences (PNAS).
Dr. Ilovitsh developed this breakthrough technology during her post-doctorate research at the lab of Prof. Katherine Ferrara at Stanford University. The technique utilizes low frequency ultrasound (250 kHz) to detonate microscopic tumor-targeted bubbles. In vivo, cell destruction reached 80% of tumor cells.
“Microbubbles are microscopic bubbles filled with gas, with a diameter as small as one tenth of a blood vessel,” Dr. Ilovitsh explains. “At certain frequencies and pressures, sound waves cause the microbubbles to act like balloons: they expand and contract periodically. This process increases the transfer of substances from the blood vessels into the surrounding tissue. We discovered that using lower frequencies than those applied previously, microbubbles can significantly expand, until they explode violently. We realized that this discovery could be used as a platform for cancer treatment and started to inject microbubbles into tumors directly.”
Dr. Ilovitsh and the rest of the team used tumor-targeted microbubbles that were attached to tumor cells’ membranes at the moment of the explosion, and injected them directly into tumors in a mouse model. “About 80% of tumor cells were destroyed in the explosion, which was positive on its own,” says Dr. Ilovitsh. “The targeted treatment, which is safe and cost-effective, was able to destroy most of the tumor. However, it is not enough. In order to prevent the remaining cancer cells to spread, we needed to destroy all of the tumor cells. That is why we injected an immunotherapy gene alongside the microbubbles, which acts as a Trojan horse, and signaled the immune system to attack the cancer cell.”
On its own, the gene cannot enter into the cancer cells. However, this gene aimed to enhance the immune system was co-injected together with the microbubbles. Membrane pores were formed in the remaining 20% of the cancer cells that survived the initial explosion, allowing the entry of the gene into the cells. This triggered an immune response that destroyed the cancer cell.
“The majority of cancer cells were destroyed by the explosion, and the remaining cells consumed the immunotherapy gene through the holes that were created in their membranes,” Dr. Ilovitsh explains. “The gene caused the cells to produce a substance that triggered the immune system to attack the cancer cell. In fact, our mice had tumors on both sides of their bodies. Despite the fact that we conducted the treatment only on one side, the immune system attacked the distant side as well.”
Dr. Ilovitsh says that in the future she intends to attempt using this technology as a noninvasive treatment for brain-related diseases such as brain tumors and other neurodegenerative conditions such as Alzheimer’s and Parkinson’s diseases. “The blood-brain barrier does not allow for medications to penetrate through, but microbubbles can temporary open the barrier, enabling the arrival of the treatment to the target area without the need for an invasive surgical intervention.”
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Tumor-targeted microbubbles
- Making immunotherapy more effective against small cell lung cancer
Fred Hutchinson Cancer Center lung cancer scientists open a human trial after preclinical work shows that making small cell lung cancer more visible to immune cells can make the tumors more responsive ...
- New research could lead to a simple blood test for brain tumors
University of Bristol research could lead to better detection of the most common type of malignant brain cancer.
- 3D model of brain tumor environment could aid personalized treatment
Scientists have developed a novel 3D tissue-engineered model of the glioblastoma tumor microenvironment that can be used to learn why the tumors return and what treatments will be most effective at ...
- Cancer/Tumor Profiling Markets, 2030
The "Cancer/Tumor Profiling Market by Technique, by Technology and by Application - Global Opportunity Analysis and Industry Forecast 2022-2030" report has been added ...
- Gene Responsible for Deadly Brain Tumors Also Causes Childhood Cancers
Researchers have identified that the gene responsible for glioblastoma also drives the development of soft tissue cancers in children.
Go deeper with Google Headlines on:
Tumor-targeted microbubbles
Go deeper with Bing News on:
Ultrasound with tumor-targeted microbubbles
- Head and Neck Cancer News
ATA 2021 Lenvatinib/Pembro Combo for Advanced Anaplastic Thyroid Cancer The nonchemotherapy ... brain barrier with low-intensity ultrasound and injected microbubbles may result in reduced amyloid ...
- Microrobots in swarms for medical embolization
Microrobotic agents can form swarms of targeted drug delivery for improved imaging analyses. In a new report now published in Science Advances, Junhui Law and a team of researchers in mechanical ...
- Imaging in Prostate Cancer
The microbubbles reflect ultrasound to a much greater extent ... [34] Contrast-enhanced ultrasound certainly increases the tumor detection rate of targeted biopsies, but at this stage cannot ...
- Theoretical model describing the motion of ultrasound waves in the presence of multiple bubbles
One early application is the use of microbubbles ... the resolution of ultrasound images. However, they may also be extended to interventions that accomplish the targeted ablation of tissues.
- Multi-bubble math
Researchers at the University of Tsukuba extend the theoretical equations for sound to handle liquids containing multiple microbubbles ... ultrasound for imaging, as well as for treating tumors ...