Joe Hamilton, a participant in the University of Michigan RPNI study, naturally uses his mind to control a DEKA prosthetic hand to pinch a small zipper on a hand development testing platform. Image credit: Evan Dougherty, Michigan Engineering
In a major advance in mind-controlled prosthetics for amputees, University of Michigan researchers have tapped faint, latent signals from arm nerves and amplified them to enable real-time, intuitive, finger-level control of a robotic hand.
To achieve this, the researchers developed a way to tame temperamental nerve endings, separate thick nerve bundles into smaller fibers that enable more precise control, and amplify the signals coming through those nerves. The approach involves tiny muscle grafts and machine learning algorithms borrowed from the brain-machine interface field.
“This is the biggest advance in motor control for people with amputations in many years,” said Paul Cederna, who is the Robert Oneal Collegiate Professor of Plastic Surgery at the U-M Medical School, as well as a professor of biomedical engineering.
“We have developed a technique to provide individual finger control of prosthetic devices using the nerves in a patient’s residual limb. With it, we have been able to provide some of the most advanced prosthetic control that the world has seen.”
Cederna co-leads the research with Cindy Chestek, associate professor of biomedical engineering at the U-M College of Engineering. In a paper published March 4 in Science Translational Medicine, they describe results with four study participants using the Mobius Bionics LUKE arm. View an in-depth multimedia presentation about the work.
Intuitive prosthetic control works on the first try
“You can make a prosthetic hand do a lot of things, but that doesn’t mean that the person is intuitively controlling it. The difference is when it works on the first try just by thinking about it, and that’s what our approach offers,” Chestek said. “This worked the very first time we tried it. There’s no learning for the participants. All of the learning happens in our algorithms. That’s different from other approaches.”
While study participants aren’t yet allowed to take the arm home, in the lab, they were able to pick up blocks with a pincer grasp; move their thumb in a continuous motion, rather than have to choose from two positions; lift spherically shaped objects; and even play in a version of Rock, Paper, Scissors called Rock, Paper, Pliers.
“It’s like you have a hand again,” said study participant Joe Hamilton, who lost his arm in a fireworks accident in 2013. “You can pretty much do anything you can do with a real hand with that hand. It brings you back to a sense of normalcy.”
Turning a tiny muscle graft into a nerve signal amplifier
One of the biggest hurdles in mind-controlled prosthetics is tapping into a strong and stable nerve signal to feed the bionic limb. Some research groups—those working in the brain-machine interface field—go all the way to the primary source, the brain. This is necessary when working with people who are paralyzed. But it’s invasive and high-risk.
For people with amputations, peripheral nerves—the network that fans out from the brain and spinal cord—have been interesting, but they hadn’t yet led to a long-term solution for a couple of reasons: The nerve signals they carry are small. And other approaches to picking up those signals involved probes that eavesdropped by force. These “nails in nerves,” as researchers sometimes refer to them, lead to scar tissue, which muddles that already faint signal over time.
The U-M team came up with a better way. They wrapped tiny muscle grafts around the nerve endings in the participants’ arms. These “regenerative peripheral nerve interfaces,” or RPNIs, offer severed nerves new tissue to latch on to. This prevents the growth of nerve masses called neuromas that lead to phantom limb pain. And it gives the nerves a megaphone. The muscle grafts amplify the nerve signals. Two patients had electrodes implanted in their muscle grafts, and the electrodes were able to record these nerve signals and pass them on to a prosthetic hand in real time.
“To my knowledge, we’ve seen the largest voltage recorded from a nerve compared to all previous results,” Chestek said. “In previous approaches, you might get 5 microvolts or 50 microvolts—very very small signals. We’ve seen the first ever millivolt signals.
“So now we can access the signals associated with individual thumb movement, multidegree of freedom thumb movement, individual fingers. This opens up a whole new world for people who are upper limb prosthesis users.”
And their interface has already lasted years. Others degrade within months due to scar tissue.
The future of prosthetics research and industry
The findings also open up new possibilities for the field, said Chestek, whose expertise is on real-time machine learning algorithms to translate neural signals into movement intent.
“What we found is now the nerve signals are good enough to apply the whole world of things we learned in brain control algorithms to nerve control,” she said.
The approach generates signals for finer movements than what today’s prosthetic hands are capable of.
“Other research groups have contributed to this as well, but we’ve leapfrogged the capabilities of the prosthetic hands that are currently available. I think this is strong motivation for further developments from prosthetic hand companies,” said Philip Vu, a research fellow in biomedical engineering and first author of the paper.
A clinical trial is ongoing. The team is looking for participants.
“So many times, the things we do in a research lab add to the knowledge in the field, but you never actually get a chance to see how that impacts a person,” Cederna said. “When you can sit and watch one person with a prosthetic device do something that was unthinkable 10 years ago, it is so gratifying. I’m so happy for our participants, and even more happy for all the people in the future that this will help.”
Added Chestek, “It’s going to be a ways from here, but we’re not going to stop working on this until we can completely restore able-bodied hand movements. That’s the dream of neuroprosthetics.”
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Mind-controlled prosthetics
- New bionic technology helps amputees in the Hudson Valley get their lives backon April 9, 2021 at 4:08 pm
Bionic technology is also known as “mind-controlled” prosthetics. Amputees like 30-year-old Sara Pellerin, who lost her arm after complications with Swine Flu is now able to open containers ...
- Prosthetic Arm Can Sense Touch, Move with Wearer's Thoughtson April 5, 2021 at 5:00 pm
Losing a limb is probably one of the most physically challenging things a person can face, which is one of the reasons why researchers have been working for decades to develope prosthetics with ...
- AMO Arm pneumatic prosthetic does mind-control on the cheapon April 4, 2021 at 5:01 pm
Ryerson biomedical engineering students Michal Prywata and Thiago Caires' prosthetic arm is controlled by brain signals, which is a first in medical prosthetics. Two Ryerson University ...
- Karachi students introduce another version of mind-controlled prosthetic arm, not yet available globally.on April 2, 2021 at 1:16 am
Two Karachi students have claimed to introduce the world’s first-ever mind-controlled prosthetic arms as part of their final year project to help amputees or disabled persons. As per details, the arm ...
- Össur Recognized by World Intellectual Property Organization (WIPO) as Leading Assistive Technology Developmenton March 25, 2021 at 5:41 am
The report notes that patents for advanced prosthetics, including neuroprosthetics - also known as "mind-controlled" prostheses, a field that Össur pioneered with the world's first-in-man cases ...
Go deeper with Google Headlines on:
Mind-controlled prosthetics
Go deeper with Bing News on:
Neuroprosthetics
- Neuroprosthetics Market Size Accruals of Tremendous Growth by 2025 at 12.4%. % of CAGR; Says Reports and Dataon April 13, 2021 at 1:56 pm
Reports and Data have segmented the Neuroprosthetics market on the basis of type, technology type, application, and region On the basis of region, the neuro-prosthetics market is segmented into Asia ...
- Neuroprosthetics Market Size - Top manufacturers Entry are MEDTRONIC,ABBOTT,COCHLEAR,BOSTON SCIENTIFIC,LIVANO Segmentation and Forecast 2025on April 8, 2021 at 12:05 am
Apr 08, 2021 (The Expresswire) -- “ Neuroprosthetics Market “ Size, Status and Market Insights 2021, ,Neuroprosthetics Market By Type (Output Neuroprosthetics,Input Neuroprosthetics,,), By ...
- Neuroprosthetics Market Size, Global Industry Analysis, Statistics & Forecasts to 2025on April 7, 2021 at 11:51 am
Apr 07, 2021 (Market Insight Reports) -- Selbyville, Delaware, Market Study Report, LLC, has added a research study on ‘Neuroprosthetics Market’ which extends an in-depth analysis of the potential ...
- Neuroscience seminar highlights technologies for brain injuries, vaccineson March 30, 2021 at 5:00 pm
Brain-Machine Interfaces (BMI), neurodegenerative diseases, addictive behaviors, and neuroprosthetics. Plexon's mission is to be an investigator's most dependable research partner.
- Neuroscience seminar highlights technologies for brain injuries, vaccine developmentson March 30, 2021 at 9:23 am
Our equipment and solutions lay the foundation for work performed around the globe in fields such as basic neuroscience, Brain-Machine Interfaces (BMI), neurodegenerative diseases, addictive behaviors ...