Picture of the single atom trap. In the ultra-high vacuum glass cell a single Rubidium atom is captured, which later will be entangled with a photon. Photo: C. Olesinski/LMU
Physicists at LMU, together with colleagues at Saarland University, have successfully demonstrated the transport of an entangled state between an atom and a photon via an optic fiber over a distance of up to 20 km – thus setting a new record.
‘Entanglement’ describes a very particular type of quantum state which is not attributed to a single particle alone, but which is shared between two different particles. It irrevocably links their subsequent fates together – no matter how far apart they are – which famously led Albert Einstein to call the phenomenon as “spooky action at a distance”. Entanglement has become a cornerstone of new technologies based on effects at the quantum level and is distribution over long distances a central goal in quantum communication. Now LMU researchers led by physicist Harald Weinfurter, in collaboration with a team at the University of the Saarland in Saarbrücken, have shown that the entangled state of an atom and a photon can be transmitted via an optic fiber (like those used in telecommunications networks) over a distance of up to 20 km. The previous record was 700 meters. “The experiment represents a milestone, insofar as the distance covered confirms that quantum information can be distributed on a large scale with little loss,” says Weinfurter. “Our work therefore constitutes a crucial step toward the future realization of quantum networks.”
Quantum networks essentially consist of quantum memories (made up of one or more atoms, for example) that act as nodes, and communication channels in which photons (light quanta) can propagate to link the nodes together. In their experiment, the researchers entangled a rubidium atom with a photon, and were able to detect the entangled state – which now shares the quantum properties of both particles – after its passage through a 20-km coil of optic fiber.
The biggest problem the experimenters faced start with the properties of the rubidium atom. Following targeted excitation, these atoms emit photons with a wavelength of 780 nanometers, in the near-infrared region of the spectrum. “In an optic fiber made of glass, light at this wavelength is rapidly absorbed,” Weinfurter explains. Conventional telecommunications networks therefore make use of wavelengths around 1550 nanometers, which markedly reduces losses in transit.
Obviously, this wavelength would also improve the experimenters’ chances of success. So Matthias Bock, a member of the group in Saarbrücken, built what is called a quantum frequency converter that was specifically designed to increase the wavelength of the emitted photons from 780 to 1520 nanometers. This task itself posed a number of extremely demanding technical challenges. For it was imperative to ensure that conversion from only a single photon to only one other photon happens and that none of the other properties of the entangled state, especially the polarization of the photon, were altered during the conversion process. Otherwise, the entangled state would be lost. “Thanks to the use of this highly efficient converter, we were able to maintain the entangled state over a much longer range at telecommunications wavelengths, and therefore to transport the quantum information that it carries over long distances,” says Weinfurter.
In the next step, the researchers plan to frequency convert the light emitted by a second atom, which should enable them to generate entanglement between the two atoms over long telecommunications fibers. The properties of glass-fiber cables vary depending on factors such as the temperature and strain to which they are exposed. For this reason, the team intends to first carry out this experiment under controlled conditions in the laboratory. In the event of success, field experiments will be undertaken also adding new nodes to a growing network. After all, even long journeys can be successfully completely by taking one step at a time.
Physical Review Letters, 2020
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Quantum networks
- Singtel to Build Singapore's First Country-Wide Quantum-Secure Network Plus for Businesses
Singtel announced that it will be developing Singapore’s first National Quantum-Safe Network Plus (NQSN+), for enterprises, in partnership with global industry leader, ID Quantique (IDQ). The telco ...
- IBM’s 10-Year Blueprint For Error-Corrected Quantum Computing
IBM’s new quantum computing roadmap provides a detailed and credible plan to build an error-corrected quantum computer before the end of the decade.
- The race is on for a new internet based on quantum physics
Information in quantum physics differs from the units of data – binary digits – stored and processed by computers that form the core of the current World Wide Web. The quantum physics realm covers the ...
- Quantum Xchange to Host Webinar on How to Monitor, Mitigate, and Manage Cryptographic Risk in the Enterprise
Quantum Xchange, at the forefront of encryption innovation with quantum-safe crypto-agility, visibility, and management solutions will host the webinar, "How to Achieve Cryptographic Clarity and ...
- IBM unveils Heron quantum processor and new modular quantum computer
IBM continues to add to the quantum computing technology needed to make the revolutionary systems faster and more useful for innovative applications. At the IBM Quantum Summit, it unveiled a modular ...
Go deeper with Google Headlines on:
Quantum networks
[google_news title=”” keyword=”quantum networks” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Quantum communication
- IBM debuts utility-scale quantum processors
The firm unveils IBM Quantum Heron, which it says is the first in a new series of utility-scale quantum processors.
- IBM Debuts Utility-Scale Quantum Processor, First Modular Quantum Computer
The architecture combines quantum communication and computation, assisted by classical computing resources, and leverages a middleware layer to integrate quantum and classical workflows, IBM said. As ...
- 133qubit Quantum Heron launched by IBM
IBM has debuted 'IBM Quantum Heron,' the first in a new series of utility-scale quantum processors with an architecture engineered over the past four ...
- IBM’s Releases Its Most Performant Quantum Processor and 1st Modular Quantum Computer
IBM Quantum Heron’ is released as IBM’s most performant quantum processor in the world, with newly built architecture offering up to five-fold improve ...
- Rambus Expands Quantum Safe Solutions with Quantum Safe Engine IP
Tasks that are currently considered computationally impossible would become trivial for a quantum computer, including breaking public key cryptography, which is the backbone of secure communication on ...
Go deeper with Google Headlines on:
Quantum communication
[google_news title=”” keyword=”quantum communication” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]