
Researchers rewrote the binary data in the first line of a 24-bit memory array (top image, red arrow) using molecules of hydrogen to encode the letter “M” (bottom image).
CREDIT
Adapted from ACS Nano 2019, DOI: 10.1021/acsnano.9b07637
As computers continue to infiltrate almost every aspect of modern life, their negative impact on the environment grows. According to recent estimates, the electricity required to power today’s computers releases a total of more than 1 gigatonne of carbon emissions to the atmosphere each year.
Now, researchers reporting in ACS Nano have developed a new manufacturing process that could enable ultra-efficient atomic computers that store more data and consume 100 times less power.
Scientists have previously manipulated single atoms to make ultra-dense memory arrays for computers, which store more data in a much smaller space than conventional hard drives and consume much less power. In a technique known as hydrogen lithography, researchers use the tip of a scanning tunneling microscope (STM) to remove single atoms of hydrogen bonded to a silicon surface. The pattern of silicon atoms bound to or lacking a hydrogen atom forms a binary code that stores the data. However, there is a bottleneck when rewriting the data because the STM tip must pick up and deposit hydrogen atoms at precise locations. Roshan Achal, Robert Wolkow and colleagues wanted to develop a more efficient method to rewrite atomic memory arrays.

The researchers prepared silicon surfaces covered with hydrogen atoms. With hydrogen lithography, they removed certain atoms to write data. The scientists found that by taking away an extra hydrogen atom next to a bit they wanted to rewrite, they could create a reactive site that attracted hydrogen gas that was infused into the chamber. Binding of a single hydrogen gas (H2) molecule to the two adjacent sites erased the sites so that a new binary code could be written. Using hydrogen gas as a molecular eraser to rewrite the data was much faster and easier than bringing in individual hydrogen atoms on an STM tip. The researchers demonstrated the technique’s ability to rewrite a small 24-bit memory array. The new method allows 1,000-times-faster fabrication of atomic-scale computers, making them ready for real-world manufacture, the researchers say.
Learn more: Atomic-scale manufacturing method could enable ultra-efficient computers
Go deeper with Bing News on:
Atomic computers
- New study runs rings around glass materials
Researchers have discovered structural regularity hidden in silica glass. Image: Motoki Shiga.
- Controlling Electron Quantum States with High-Resolution Microscopy
Researchers at the University of Regensburg have discovered a technique for controlling the quantum state of individual electrons by employing a high-resolution atomic microscope.
- Google, IBM make strides toward quantum computers that may revolutionize problem solving
Companies and countries are in a race to develop quantum computers. The machines could revolutionize problem solving in medicine, physics, chemistry and engineering.
- Physicists May Have Found a Hard Limit on The Performance of Large Quantum Computers
A newly discovered trade-off in the way time-keeping devices operate on a fundamental level could set a hard limit on the performance of large-scale quantum computers, according to researchers from ...
- ‘We’re hitting new limits.’ NC quantum computing bullish on a coveted breakthrough
Quantum computers mirror physics at the atomic scale to manage information. While traditional computers run on bits symbolized by binary 1s and 0s, quantum computers use quantum bits, or qubits, to ...
Go deeper with Google Headlines on:
Atomic computers
[google_news title=”” keyword=”atomic computers” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Atomic-scale computers
- Harvard-Led Team Makes Quantum Computing Research Milestone Under DARPA Program
Looking for the latest Government Contracting News? Read about Harvard-Led Team Makes Quantum Computing Research Milestone Under DARPA Program.
- New study runs rings around glass materials
Researchers have discovered structural regularity hidden in silica glass. Image: Motoki Shiga.
- Controlling Electron Quantum States with High-Resolution Microscopy
Researchers at the University of Regensburg have discovered a technique for controlling the quantum state of individual electrons by employing a high-resolution atomic microscope.
- A novel microscope operates on the quantum state of single electrons
Physicists at the University of Regensburg have found a way to manipulate the quantum state of individual electrons using a microscope with atomic resolution. The results of the study have now been ...
- 'We're hitting new limits.' North Carolina quantum computing bullish on a coveted breakthrough
Quantum computers mirror physics at the atomic scale to manage information. While traditional computers run on bits symbolized by binary 1s and 0s, quantum computers use quantum bits, or qubits, to ...
Go deeper with Google Headlines on:
Atomic-scale computers
[google_news title=”” keyword=”atomic-scale computers” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]