This scanning electron microscope image of cardiomyocyte cells cultured on an array of electro-plasmonic nanoantennae shows the considerable size difference between the nanoantennae and electrogenic cells. On this device, 2.25 million wireless electro-plasmonic nanoelectrodes are integrated on a glass substrate. (Image credit: Yanik Lab, UCSC)
New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications.
Researchers at UC Santa Cruz have developed ultrasensitive nanoscale optical probes to monitor the bioelectric activity of neurons and other excitable cells. This novel readout technology could enable scientists to study how neural circuits function at an unprecedented scale by monitoring large numbers of individual neurons simultaneously. It could also lead to high-bandwidth brain-machine interfaces with dramatically enhanced precision and functionality.
Monitoring the electrical activity of neurons is conventionally done using microelectrode arrays, but these are difficult to implement at a large scale and offer limited spatial resolution. In addition, the electronic wiring required for readout is a major limitation of microelectrodes, according to Ali Yanik, assistant professor of electrical and computer engineering at UCSC’s Baskin School of Engineering.
“The extremely limited bandwidth of the electronic wiring is a bottleneck created by the very nature of electrons,” Yanik said. “We turn to photons because light offers billion-fold enhanced multiplexing and information carrying capabilities, the same reason why the telecommunication industry moved to fiber optics. By converting bioelectric signals to photons, we will be able to transmit large-bandwidth neural activity optically.”
Yanik’s lab, working with collaborators at the University of Notre Dame, has developed extracellular nanoprobes that enable ultrasensitive optical monitoring of electrophysiological signals. Other optical monitoring techniques require genetic modifications to insert fluorescent molecules into cell membranes, which rules out their use in humans.
Yanik’s approach is similar to extracellular microelectrode techniques, except that the readout mechanism is optical and the probes have nanoscale dimensions. In addition, it yields a much brighter signal and higher signal-to-noise ratios than fluorescence-based probes.
“Harnessing the unparalleled multiplexing and information-carrying capability of light to dissect the neural circuitry and decrypt electrophysiological signals has been a goal of neuroscientists for nearly 50 years. We may have finally found a way to do that,” Yanik said.
The new technology is described in a paper published October 18 in Science Advances. Ahsan Habib, a Ph.D. candidate in Yanik’s lab, is first author of the paper.
Broad applications
Although the technology is still in the early stages of development, Yanik said it could open the door to a wide range of applications. Ultimately, he said, it may lead to powerful brain-machine interfaces, enabling the development of new brain-controlled prosthetic technologies for people with disabilities.
Yanik’s optical nanoprobes are nanoscale devices (less than 100 nanometers in diameter) based on a novel metallic antenna structure coupled to a biocompatible polymer called PEDOT. This polymer is “electro-chromic,” meaning its optical properties change in response to the local electric field. The antenna is a “plasmonic nanoantenna,” meaning it uses nanoscale interactions of light and matter in a way analogous to a radio antenna. The result is an “electro-plasmonic nanoantenna” that provides reliable optical detection of local electric field dynamics with remarkably high sensitivity.
“The electro-plasmonic nanoantenna has a resonance frequency that changes in response to the electric field, and we can see that when we shine light on it, so we can read the signal remotely,” Yanik explained.
The researchers performed a series of laboratory experiments to characterize and optimize the properties of the electro-plasmonic nanoantenna. They then tested its ability to monitor electrophysiological signals in cell cultures of cardiomyocytes (heart muscle cells which, like neurons, can generate electrical impulses). The results demonstrated real-time, all-optical detection of electrical activity in cardiomyocytes, with high signal-to-noise ratios.
Aside from not requiring genetic manipulations, the advantages of this technique over fluorescent probes include the very low light intensities needed, two to three orders of magnitude lower than the typical light intensities used for fluorescent voltage probes. In addition, the fluorescent molecules are susceptible to bleaching and generate disruptive oxygen free radicals.
Yanik described two possible approaches for using the optical nanoprobes to monitor neural activity in living animals, including humans. The probes could be integrated with an optical fiber into a flexible and biocompatible implant, or they could be synthesized as nanoparticles suspended in a colloidal solution, with surface proteins attached to enable the probes to bind to specific cell types.
“With the solution-based system, you could inject it into the bloodstream or into an organ, and the nanoprobes attach to the specific cell types you want to monitor,” Yanik said. “We are just at the beginning stages of this, but I think we have a good foundation to build on.”
An important consideration for using neural probes in living animals is the inherent immune response to foreign materials in the body. Previous studies have shown that coating electrodes with the biocompatible PEDOT polymer dramatically improves the long-term performance of microfabricated neural prosthetic devices. The size of implants also influences the immune response.
“The critical feature sizes are 10 to 15 microns. Recent studies have shown that smaller size implants lead to dramatically reduced inherent immune response,” Habib said. “In this sense, our PEDOT-coated probes with nanoscale dimensions are particularly advantageous for long-term operation.”
Learn more: Novel nanoprobes show promise for optical monitoring of neural activity
The Latest on: Brain-machine interfaces
via Google News
The Latest on: Brain-machine interfaces
- Whatever Happened to the Transhumanists?on August 1, 2022 at 1:40 pm
The once-vibrant transhumanist movement doesn’t capture as much attention as it used to, but as an idea it’s far from dead.
- Brain & Behavior Research Foundation recognizes exceptional research in mental illnesson August 1, 2022 at 11:37 am
The Brain & Behavior Research Foundation today announced the winners of its 2022 Klerman and Freedman Prizes, recognizing exceptional clinical and basic research in mental illness.
- Brain & Behavior Research Foundation Honors Outstanding Psychiatric Researcherson August 1, 2022 at 10:00 am
The Brain & Behavior Research Foundation (BBRF) today announced the winners of its 2022 Klerman and Freedman Prizes, recognizing exceptional clinical and basic research ...
- The Age of Brain-Computer Interfaces Is on the Horizonon August 1, 2022 at 4:00 am
Oxley is the founder and CEO of Synchron, a company creating a brain-computer interface, or BCI. These devices work by eavesdropping on the signals emanating from your brain and converting them into ...
- NeuroXess made the list of MIT Technology Review's TR50 for its silk-based minimally invasive implantable flexible brain-machine interface technologyon July 31, 2022 at 9:40 pm
NeuroXess announced that it has been included in MIT Technology Review's list of the world's 50 smartest companies – the TR50 list – released on July 29 in Wuxi, China. NeuoXess was recognized mainly ...
- Dr. Gerwin Schalk, Chief Scientific Officer & Co-Founder at Helios – Interview Serieson July 26, 2022 at 7:31 am
Dr. Schalk is Chief Scientific Officer and Co-Founder of Helios, an AI-based platform for voice and emotion analytics. Dr. Schalk leads the scientific and technical development of Comprehend and ...
- Can ‘brain painting’ help ADHD patients? USF seeks answerson July 23, 2022 at 12:15 am
a computer scientist in the USF College of Engineering and director of the Neuro-Machine Interaction Lab, previously focused on developing mind-controlled drones using brain-computer interfaces.
- Exploring the Ethical Challenges of Brain-Computer Interface Technologyon July 21, 2022 at 2:09 am
The current state of BCI technology Brain-computer interfaces – also called brain-machine interfaces – include any technology that creates a real-time and direct connection between a user’s brain and ...
- Brain-Computer Interfaces at Home: Interview with Dr. Solzbacher of Blackrock Neurotechon July 20, 2022 at 5:00 pm
Florian Solzbacher, Blackrock Neurotech: Brain-computer interfaces (BCIs ... hardware, and machine learning software, decode and translate brain signals into digital commands, enabling people ...
- Connecting mind to machine: The science behind 'RoboCop'on July 20, 2022 at 11:59 am
Thirty-five years ago this week, the world was introduced to RoboCop. Set in Detroit in a dystopian future, the movie follows officer Alex Murphy (Peter Weller), who, after a fatal injury, is ...
via Bing News