
Cell growth in a microstructure Cells spreading in a 3D scaffold – from left to right: week 1, week 3 week 5. Top: 3D setup, bottom: one layer only.
With a new process developed at TU Wien (Vienna), living cells can be integrated into fine structures created in a 3D printer – extremely fast and with very high resolution.
Tissue growth and the behavior of cells can be controlled and investigated particularly well by embedding the cells in a delicate 3D framework. This is achieved using additive 3D printing methods – so called “bioprinting” techniques. However, this involves a number of challenges: Some methods are very imprecise or only allow a very short time window in which the cells can be processed without being damaged. In addition, the materials used must be cell-friendly during and after the 3D biopriting process. This restricts the variety of possible materials.
A high-resolution bioprinting process with completely new materials has now been developed at TU Wien (Vienna): Thanks to a special “bio ink” for the 3D printer, cells can now be embedded in a 3D matrix printed with micrometer precision – at a printing speed of one meter per second, orders of magnitude faster than previously possible.
The environment matters
“The behavior of a cell behaves depends crucially on the mechanical, chemical and geometric properties of its environment,” says Prof. Aleksandr Ovsianikov, head of the 3D Printing and Biofabrication research group at the Institute of Materials Science and Technology (TU Wien). “The structures in which the cells are embedded must be permeable to nutrients so that the cells can survive and multiply. But it is also important whether the structures are stiff or flexible, whether they are stable or degrade over time”.
It is possible to first produce suitable structures and then colonise them with living cells – but this approach can make it difficult to place the cells deep inside the scaffold, and it is hardly possible to achieve a homogeneous cell distribution that way. The much better option is to embed the living cells directly into the 3D structure during the production of the structure – this technique is known as “bioprinting”.
Printing microscopically fine 3D objects is no longer a problem today. However, the use of living cells presents science with completely new challenges: “Until now, there has simply been a lack of suitable chemical substances,” says Aleksandr Ovsianikov. “You need liquids or gels that solidify precisely where you illuminate them with a focused laser beam. However, these materials must not be harmful to the cells, and the whole process has to happen extremely quickly.”
Two photons at once
In order to achieve an extremely high resolution, two-photon polymerization methods have been used at TU Wien for years. This method uses a chemical reaction that is only initiated when a molecule of the material simultaneously absorbs two photons of the laser beam. This is only possible where the laser beam has a particularly high intensity. At these points the substance hardens, while it remains liquid everywhere else. Therefore, this two-photon method is best suited to produce extremely fine structures with high precision.
However, these high resolution techniques usually have the disadvantage of being very slow – often in the range of micrometers or a few millimeters per second. At TU Wien, however, cell-friendly materials can be processed at a speed of more than one meter per second – a decisive step forward. Only if the entire process can be completed within a few hours is there a good chance of the cells surviving and developing further.
Numerous new options
“Our method provides many possibilities to adapt the environment of the cells,” says Aleksandr Ovsianikov. Depending on how the structure is built, it can be made stiffer or softer. Even fine, continuous gradients are possible. In this way, it is possible to define exactly how the structure should look in order to allow the desired kind of cell growth and cell migration. The laser intensity can also be used to determine how easily the structure will be degraded over time.
Ovsianikov is convinced that this is an important step forward for cell research: “Using these 3D scaffolds, it is possible to investigate the behavior of cells with previously unattainable accuracy. It is possible to study the spread of diseases, and if stem cells are used, it is even possible to produce tailor-made tissue in this way”.
The research project is an international and interdisciplinary cooperation in which three different institutes of the TU Vienna were involved: Ovsianikov’s research group was responsible for the printing technology itself, the Institute of Applied Synthesic Chemistry developed fast and cell friendly photoinitiators (the substances that initiate the hardening process when illuminated) and the Institute of Lightweight Structures and Structural Biomechanics analyzed the mechanical properties of the printed structures.
Learn more: Bioprinting: Living cells in a 3D printer
The Latest on: Bioprinting
via Google News
The Latest on: Bioprinting
- Rousselot Biomedical, a Darling Ingredients brand, joins European ENLIGHT project to develop a 3D living model of pancreatic tissueon February 22, 2021 at 10:38 am
Darling Ingredients Inc. (NYSE: DAR) today announced that its Rousselot Biomedical brand is joining the European project ENLIGHT.
- Global 3D Bioprinting Market to Exhibit a Decent CAGR of 16.01% and Hit USD 4.8 Billion by 2030on February 17, 2021 at 11:16 pm
The global 3D Bioprinting market size is expected to be worth around US$ 4.8 billion by 2030, according to a new report by Vision Research Reports. The global 3D Bioprinting market size was valued at ...
- New bioprinting technique allows for complex microtissueson February 17, 2021 at 5:21 am
Bioprinting is currently used to generate model tissues for research and has potential applications in regenerative medicine. Existing bioprinting techniques rely on printing cells embedded in ...
- 3D bioprinting paves way for functional adult-sized tissues and organson February 16, 2021 at 8:17 pm
Research into 3D bioprinting has grown rapidly in recent years as scientists seek to re-create the structure and function of complex biological systems from human tissues to entire organs.
- FRESH 3-D-printing platform paves way for tissues, organson February 16, 2021 at 8:01 am
Research into 3-D bioprinting has grown rapidly in recent years as scientists seek to re-create the structure and function of complex biological systems from human tissues to entire organs.
- Breakthroughs In 3D-Printed Transplantable Organs Have 3D Systems Expanding Its Investment In Regenerative Medicineon February 16, 2021 at 6:22 am
With its bioprinting collaboration with United Therapeutics showing huge promise, the pioneering AM company is doubling down on their bet.
- U.S 3D Bioprinting Industry Market with (Covid-19) Impact Analysis: Worldwide Key Industry Segments & Forecast, 2021-2027on February 16, 2021 at 1:01 am
This has brought along a several changes in economic situations. The 3D Bioprinting Market report gives a complete analysis of the global market size, Market Classification, Geographic Scope on ...
- The world’s first lab-grown rib-eye steak demonstrates new 3D bioprinting technologyon February 14, 2021 at 10:09 pm
The world's first lab-grown rib-eye steak demonstrates new 3D bioprinting technology Just over two years after Israeli start-up Aleph ...
- Aleph Farms, Technion Debut ‘World’s First’ Cultivated Ribeye Steakon February 10, 2021 at 7:48 am
Israeli clean meat startup Aleph Farms has partnered with the Technion to unveil its 3D printed ribeye steak made from cow cells.
- 3D Bioprinting Market Size 2021, Global Report, Share Analysis, Regional Growth, Top Companies Revenue, Future Trendson February 10, 2021 at 2:35 am
3D Bioprinting Market Research Report: By Technology (Microextrusion Bioprinting, Inkjet 3D Bioprinting, Laser-assisted Bioprinting, Magnetic 3D Bioprinting), By Material (Living Cells ...
via Bing News