This greatly magnified image shows four layers of atomically thin materials that form a heat-shield just two to three nanometers thick, or roughly 50,000 times thinner than a sheet of paper. (Image credit: National Institute of Standards and Technology)
Atomically thin materials developed by Stanford researchers could create heat shields for cell phones or laptops that would protect people and temperature-sensitive components and make future electronic gadgets even more compact.
Excess heat given off by smartphones, laptops and other electronic devices can be annoying, but beyond that it contributes to malfunctions and, in extreme cases, can even cause lithium batteries to explode.
To guard against such ills, engineers often insert glass, plastic or even layers of air as insulation to prevent heat-generating components like microprocessors from causing damage or discomforting users.
Now, Stanford researchers have shown that a few layers of atomically thin materials, stacked like sheets of paper atop hot spots, can provide the same insulation as a sheet of glass 100 times thicker. In the near term, thinner heat shields will enable engineers to make electronic devices even more compact than those we have today, said Eric Pop, professor of electrical engineering and senior author of a paper published Aug. 16 in Science Advances.
“We’re looking at the heat in electronic devices in an entirely new way,” Pop said.
Detecting sound as heat
The heat we feel from smartphones or laptops is actually an inaudible form of high-frequency sound. If that seems crazy, consider the underlying physics. Electricity flows through wires as a stream of electrons. As these electrons move, they collide with the atoms of the materials through which they pass. With each such collision an electron causes an atom to vibrate, and the more current flows, the more collisions occur, until electrons are beating on atoms like so many hammers on so many bells – except that this cacophony of vibrations moves through the solid material at frequencies far above the threshold of hearing, generating energy that we feel as heat.
Thinking about heat as a form of sound inspired the Stanford researchers to borrow some principles from the physical world. From his days as a radio DJ at Stanford’s KZSU 90.1 FM, Pop knew that music recording studios are quiet thanks to thick glass windows that block the exterior sound. A similar principle applies to the heat shields in today’s electronics. If better insulation were their only concern, the researchers could simply borrow the music studio principle and thicken their heat barriers. But that would frustrate efforts to make electronics thinner. Their solution was to borrow a trick from homeowners, who install multi-paned windows – usually, layers of air between sheets of glass with varying thickness – to make interiors warmer and quieter.
“We adapted that idea by creating an insulator that used several layers of atomically thin materials instead of a thick mass of glass,” said postdoctoral scholar Sam Vaziri, the lead author on the paper.
Atomically thin materials are a relatively recent discovery. It was only 15 years ago that scientists were able to isolate some materials into such thin layers. The first example discovered was graphene, which is a single layer of carbon atoms and, ever since it was found, scientists have been looking for, and experimenting with, other sheet-like materials. The Stanford team used a layer of graphene and three other sheet-like materials – each three atoms thick – to create a four-layered insulator just 10 atoms deep. Despite its thinness, the insulator is effective because the atomic heat vibrations are dampened and lose much of their energy as they pass through each layer.
To make nanoscale heat shields practical, the researchers will have to find some mass production technique to spray or otherwise deposit atom-thin layers of materials onto electronic components during manufacturing. But behind the immediate goal of developing thinner insulators looms a larger ambition: Scientists hope to one day control the vibrational energy inside materials the way they now control electricity and light. As they come to understand the heat in solid objects as a form of sound, a new field of phononics is emerging, a name taken from the Greek root word behind telephone, phonograph and phonetics.
“As engineers, we know quite a lot about how to control electricity, and we’re getting better with light, but we’re just starting to understand how to manipulate the high-frequency sound that manifests itself as heat at the atomic scale,” Pop said.
Learn more: Stanford researchers build a heat shield just 10 atoms thick to protect electronic devices
The Latest on: Atomically thin materials
via Google News
The Latest on: Atomically thin materials
- Unlocking the recipe for designer magnetic particles for next generation computing technologieson August 4, 2022 at 7:21 am
Traditional computing is increasingly being replaced by artificial intelligence (AI) techniques to achieve pattern recognition capabilities across many domains, including healthcare, manufacturing and ...
- A Flexible Sensor for Real-Time Temperature Detection Using MoS2on August 3, 2022 at 2:48 pm
Fast-Response Flexible Temperature Sensors with Atomically Thin Molybdenum Disulfide ... During his studies, he worked on several research projects related to Aerospace Materials & Structures, ...
- Improved synthesis method lights up novel semiconductoron August 2, 2022 at 2:23 am
Researchers at Penn State and the Massachusetts Institute of Technology (MIT) have come up with an improved method for making a new type of semiconductor that is a few atoms thin and interacts with ...
- Graphene Continues to Blow Our Minds with Its Interesting Physicson July 26, 2022 at 5:00 pm
The MIT-led work, which involves structures composed of atomically thin layers of materials that are also biocompatible, could usher in new, faster information-processing paradigms. One potential ...
- Electrical Properties of Graphene Expanded by New Material Designon July 26, 2022 at 5:00 pm
This example already demonstrated how a combination of atomically thin materials can produce completely new electrical properties. Now the Swiss team—comprised of researchers at the University of ...
- New type of semiconductor may advance low-energy electronicson July 18, 2022 at 7:48 am
A research partnership between Penn State and the Massachusetts Institute of Technology (MIT) could enable an improved method to make a new type of semiconductor that is a few atoms thin and interacts ...
- How ultrathin polymer films can be used for storage technologyon July 17, 2022 at 4:59 pm
Aug. 1, 2019 — Physicists have succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of ...
- Cannibalistic Materials Eyed for New Fast-Charging Electronicson July 14, 2022 at 5:01 pm
Researchers at the U.S. Department of Energy have observed 2D materials with a unique property that could ... titanium and carbon atoms can spontaneously form an atomically thin layer of 2D transition ...
- Atomically-smooth gold crystals help to compress light for nanophotonic applicationson July 12, 2022 at 5:00 pm
Recently, it was demonstrated that the phonon-polaritons in thin van der Waals crystals can be compressed even further when the material is ... possible due to the atomically-smooth surfaces ...
- Materials only a few atoms thick show extreme sensitivity in interaction with light, paving the way for quantum sensingon July 6, 2022 at 5:00 pm
Scientists have made a new discovery in the quest to control extremely low intensities of light using atomically thin materials. The international team of researchers, including Professor Alexander ...
via Bing News