
Photo shows Dr. Alexeev with a model of an IBM Q quantum computer. (Image by Argonne National Laboratory.)
Argonne combines quantum and classical approaches to overcome limitations in current quantum computing hardware
In recent years, quantum devices have become available that enable researchers — for the first time — to use real quantum hardware to begin to solve scientific problems. However, in the near term, the number and quality of qubits (the basic unit of quantum information) for quantum computers are expected to remain limited, making it difficult to use these machines for practical applications.
A hybrid quantum and classical approach may be the answer to tackling this problem with existing quantum hardware. Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and Los Alamos National Laboratory, along with researchers at Clemson University and Fujitsu Laboratories of America, have developed hybrid algorithms to run on quantum machines and have demonstrated them for practical applications using IBM quantum computers (see right rail for description of Argonne’s role in the IBMQ Hub at Oak Ridge National Laboratory [ORNL]) and a D-Wave quantum computer.
“This approach will enable researchers to use near-term quantum computers to solve applications that support the DOE mission. For example, it can be applied to find community structures in metabolic networks or a microbiome.” — Yuri Alexeev, principal project specialist, Computational Science division
The team’s work is presented in an article entitled ?“A Hybrid Approach for Solving Optimization Problems on Small Quantum Computers” that appears in the June 2019 issue of the Institute of Electrical and Electronics Engineers (IEEE) Computer Magazine.
Concerns about qubit connectivity, high noise levels, the effort required to correct errors, and the scalability of quantum hardware have limited researchers’ ability to deliver the solutions that future quantum computing promises.
The hybrid algorithms that the team developed employ the best features and capabilities of both classical and quantum computers to address these limitations. For example, classical computers have large memories capable of storing huge datasets — a challenge for quantum devices that have only a small number of qubits. On the other hand, quantum algorithms perform better for certain problems than classical algorithms.
To distinguish between the types of computation performed on two completely different types of hardware, the team referred to the classical and quantum stages of hybrid algorithms as central processing units (CPUs) for classical computers and quantum processing units (QPUs) for quantum computers.
The team seized on graph partitioning and clustering as examples of practical and important optimization problems that can already be solved using quantum computers: a small graph problem can be solved directly on a QPU, while larger graph problems require hybrid quantum-classical approaches.
As a problem became too large to run directly on quantum computers, the researchers used decomposition methods to break the problem down into smaller pieces that the QPU could manage — an idea they borrowed from high-performance computing and classical numerical methods.
All the pieces were then assembled into a final solution on the CPU, which not only found better parameters, but also identified the best sub-problem size to solve on a quantum computer.
Such hybrid approaches are not a silver bullet; they do not allow for quantum speedup because using decomposition schemes limits speed as the size of the problem increases. In the next 10 years, though, expected improvements in qubits (quality, count, and connectivity), error correction, and quantum algorithms will decrease runtime and enable more advanced computation.
“In the meantime,” according to Yuri Alexeev, principal project specialist in the Computational Science division, ?“this approach will enable researchers to use near-term quantum computers to solve applications that support the DOE mission. For example, it can be applied to find community structures in metabolic networks or a microbiome.”
Learn more: The best of both worlds: how to solve real problems on modern quantum computers
The Latest on: Quantum computing
[google_news title=”” keyword=”quantum computing” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Quantum computing
- Quantum-Systems Inc. Selected for United States Department of Defense APFIT Programon June 6, 2023 at 8:10 am
Funding will aid in accelerating production of Vector fixed-wing eVTOL small UASMOORPARK, Calif., June 6, 2023 /PRNewswire/ -- Quantum-Systems ...
- IBM Plans Its First European Quantum Facility In Germanyon June 6, 2023 at 5:21 am
International Business Machines Corp (NYSE: IBM) disclosed its plans to open its first quantum data center in Europe. The data center will be based in Ehningen, Germany, serving IBM Quantum's European ...
- Google Quantum Computing partnership with University of Chicago and Tokyoon June 6, 2023 at 5:08 am
Google has announced Quantum Computing partnerships with the University of Chicago and the University of Tokyo. Investing $100 million ...
- Haiqu raises $4 million in pre-seed funding to boost adoption of near-term quantum computingon June 6, 2023 at 5:00 am
Haiqu, a startup building software to enhance the performance of quantum processors, today announced it has closed a $4M financing round led by MaC Venture Capital, with participation from Toyota ...
- IBM to open quantum computing data centre in Europe in 2024on June 6, 2023 at 4:25 am
IBM's first Europe-based quantum data centre will aim to facilitate access to "cutting-edge quantum computing" while complying with the EU's data privacy rules.
- New superconducting diode could improve performance of quantum computers and artificial intelligenceon June 6, 2023 at 4:18 am
A University of Minnesota Twin Cities-led team has developed a new superconducting diode, a key component in electronic devices, that could help scale up quantum computers for industry use and improve ...
- 3 Quantum Computing Stocks That Could Skyrocket in the Next 12 Monthson June 6, 2023 at 3:59 am
InvestorPlace - Stock Market News, Stock Advice & Trading Tips Sometimes, what appears to be the most boring, can be the most rewarding. Look ...
- Quantum computers are better at guessing, new study demonstrateson June 5, 2023 at 11:40 am
Daniel Lidar, the Viterbi Professor of Engineering at USC and Director of the USC Center for Quantum Information Science & Technology, and Dr. Bibek Pokharel, a Research Scientist at IBM Quantum, have ...
- Sony announces venture into quantum computing via UK firm Quantum Motionon June 5, 2023 at 9:27 am
Sony Innovation Fund along with other investment groups have provided $42m to the UK quantum computing firm Quantum Motion (courtesy: Quantum Motion) Quantum Motion was founded in 2017 by scientists ...
- HSBC explores quantum computing for finance sectoron May 31, 2023 at 10:59 pm
UK banking giant working with quantum computing specialist in exploring the technology’s potential in the finance sector.
via Bing News